PROGRAMA DE INVESTIGACIÓN DE LA FACULTAD DE INGENIERÍA

NORMATIVIDAD:

Acuerdo n.° 09 del 03 de agosto de 2017 del Consejo Directivo. Por el cual se modifica el sistema de investigación en la Institución Universitaria EAM.

Acuerdo n.° 11 del 27 de octubre de 2017 del Consejo Académico. Por el cual se define lo referente a la administración y el fomento de la investigación, el desarrollo y la innovación en la Institución Universitaria EAM.

Acuerdo n.° 12 del 18 de octubre de 2018 del Consejo Directivo por el cual se definen los programas de investigación en la Institución Universitaria EAM.

Acta 10 de 09 de octubre de 2018 de Comité Central de Investigaciones

Acta n.° 016 del 13 de agosto de 2018 de Consejo de Facultad de Ingeniería

PROGRAMA DE INVESTIGACIÓN DE LA FACULTAD DE INGENIERÍA
Jorge Iván Quintero Salazar y Erika Johana Caicedo Arias

SUBLÍNEA DE INGENIERÍA DE SOFTWARE
Erika Johana Caicedo Arias y Johnny Alexander Salazar Cardona

SUBLÍNEA DE INGENIERÍA INDUSTRIAL
Luis Felipe Ríos Herrera y Jorge Iván Quintero Salazar

SUBLÍNEA DE INGENIERÍA MECATRÓNICA
José Alfredo Solanilla Pantoja

ASESOR METODOLÓGICO
Isabel Cristina Londoño Franco

REVISOR DE ESTILO
Jorge Andrés Tafur Gómez

INSTITUCIÓN UNIVERSITARIA EAM
FACULTAD DE INGENIERÍA
ARMENIA, 2018
Tabla de contenido

1. **Componente administrativo**
 1.1 Denominación del programa de investigación: Concepción, diseño y construcción de soluciones detalladas para problemas de las organizaciones y las personas. 7
 1.2 Administrador del programa 7
 1.3 Estrategias de transferencia de conocimiento a la comunidad académica y entorno 8
 1.4 Mecanismos de seguimiento y control del programa de investigación: 8

2. **Componente disciplinar**
 2.1 Programas académicos de la Facultad 9
 2.2 Epistemología 9
 2.2.1 Referente conceptual del problema de investigación: 9
 2.3 Metodología 11
 2.3.1 Enfoque metodológico 11
 2.4 Problema de Investigación 12
 2.4.1 Impactos 12
 2.4.2 Información básica de los Equipos Académicos de investigación de la facultad 13
 2.4.3 Articulación del programa de investigación con los temas de estudio de los EAI, las sublíneas y áreas de investigación de cada uno de los programas académicos de la facultad. 18

3. **Componente investigativo**
 3.1 Sublínea del programa académico Ingeniería de Software 20
 3.1.1 Denominación de sublínea: Ingeniería de Software 21
 3.1.1.1 Administrador de sublínea: Consejo curricular del programa y el Equipo académico de investigación INGESOFT 21
 3.1.2 Problema de investigación 21
 3.1.2.1 Objetivo de investigación 21
 3.1.2.2 ¿Qué problema soluciona, y cuáles son las aplicaciones? 21
 3.1.2.3 ¿Contribución a la solución de problemas nacionales? 22
 3.1.2.4 Relación de la sublínea con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD) 23
 3.1.2.5 Relación del problema con la Política nacional de desarrollo productivo CONPES 3866 de agosto 08 de 2016 24
 3.1.2.6 Relación de la sublínea con los sectores del Plan de Acuerdo estratégico departamental de ciencia, tecnología e innovación del Quindío (PAED) 24
 3.1.2.7 Relación de la sublínea con los sectores priorizados del Plan regional de competitividad del Quindío 2032 25
 3.1.2.8 Grupos, redes e instituciones que trabajen a nivel nacional e internacional relacionadas con el problema de la Sublínea de investigación 26
 3.1.2.9 Contexto institucional 27
 3.1.2.10 Normatividad 27
 3.1.3 Epistemología 28
 3.1.3.1 Referente teórico 28
 3.1.3.2 Áreas de investigación correspondientes con la disciplina 32
 3.1.3.3 Espacios disciplinares que soportan y fortalecen las áreas de investigación 32
 3.2 Sublínea del Programa académico de Ingeniería Industrial 36
3.2.1 Denominación de sublínea: Análisis y Optimización Sistemas Productivos de Bienes y Servicios

3.2.1.1 Administrador de sublínea: Consejo curricular del Programa y el Equipo académico de investigación IDAOS

3.2.2 Problema de investigación

3.2.2.1 Objetivo de investigación

3.2.2.2 ¿Qué problema soluciona, y cuáles son las aplicaciones?

3.2.2.3 ¿Contribución a la solución de problemas nacionales?

3.2.2.4 Relación de la sublínea con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD)

3.2.2.5 Relación del problema con la Política nacional de desarrollo productivo CONPES 3866 de agosto 08 de 2016

3.2.2.6 Relación de la sublínea con los sectores del Plan de Acuerdo estratégico departamental de ciencia, tecnología e innovación del Quindío (PAED)

3.2.2.7 Relación de la sublínea con los sectores priorizados del Plan regional de competitividad del Quindío 2032

3.2.2.8 Grupos, redes e instituciones que trabajen a nivel nacional e internacional relacionadas con el problema de la Sublínea de investigación

3.2.2.9 Contexto institucional

3.2.2.10 Normatividad

3.2.3 Epistemología

3.2.3.1 Referente teórico

3.2.3.2 Áreas de investigación correspondientes con la disciplina

3.2.3.3 Espacios disciplinares que soportan y fortalecen las áreas de investigación

3.3 Sublínea programa académico de Ingeniería Mecatrónica

3.3.1 Denominación de sublínea: Automatización y Diseño Mecatrónico

3.3.1.1 Administrador de sublínea: Consejo curricular del Programa y el Equipo académico de investigación SCAP

3.3.2 Problema de investigación

3.3.2.1 Objetivo de investigación

3.3.2.2 ¿Qué problema soluciona, y cuáles son las aplicaciones?

3.3.2.3 ¿Contribución a la solución de problemas nacionales?

3.3.2.4 Relación de la sublínea con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD)

3.3.2.5 Relación del problema con la Política nacional de desarrollo productivo CONPES 3866 de agosto 08 de 2016

3.3.2.6 Relación de la sublínea con los sectores del Plan de Acuerdo estratégico departamental de ciencia, tecnología e innovación del Quindío (PAED)

3.3.2.7 Relación de la sublínea con los sectores priorizados del Plan regional de competitividad del Quindío 2032

3.3.2.8 Grupos, redes e instituciones que trabajen a nivel nacional e internacional relacionadas con el problema de la sublínea de investigación

3.3.2.9 Contexto institucional

3.3.2.10 Normatividad

3.3.3 Epistemología

3.3.3.1 Referente teórico

3.3.3.2 Áreas de investigación correspondientes a la disciplina

3.3.3.3 Espacios disciplinares que soportan y fortalecen las áreas de investigación
Tabla de tablas

Tabla 1. Clasificación internacional normalizada de la educación adaptada para Colombia – CINE ______ 9
Tabla 2. Equipo académico de investigación - INGESOFT ________________________________ 13
Tabla 3. Equipo académico de Investigación - IDAOS ________________________________ 15
Tabla 4. Equipo académico de investigación - SCAP ________________________________ 16
Tabla 5. Articulación del el programa de investigación con los temas de estudio de los EAI, las sublíneas y áreas de investigación ______ 18
Tabla 6. Denominaciones de acuerdo al nivel de formación ________________________________ 20
Tabla 7. Código CINE ________________________________ 20
Tabla 8. Problemas y soluciones ________________________________ 21
Tabla 9. Grupos, redes e instituciones relacionadas con el problema de la sublínea de investigación ______ 26
Tabla 10 Espacios académicos que soportan las áreas de investigación ________________________________ 32
Tabla 11. Denominaciones de acuerdo al nivel de formación ________________________________ 36
Tabla 12. Código CINE ________________________________ 36
Tabla 13. Problemas y soluciones ________________________________ 37
Tabla 14. Grupos, redes e instituciones relacionadas con el problema de la sublínea de investigación ______ 42
Tabla 15. Temas de investigación de la ingeniería industrial ________________________________ 46
Tabla 16. Espacios académicos que soportan las áreas de investigación ________________________________ 47
Tabla 17. Denominaciones de acuerdo al nivel de formación ________________________________ 50
Tabla 18. Código CINE ________________________________ 50
Tabla 19. Problemas y aplicaciones ________________________________ 51
Tabla 20. Grupos, redes e instituciones relacionadas con el problema de la sublínea de investigación ______ 56
Tabla 21. Espacios académicos que soportan las áreas de investigación ________________________________ 62
<table>
<thead>
<tr>
<th>Gráfico</th>
<th>Estado Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Conceptos básicos</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>Etapas método científico</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Método heurístico</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Ciclo de vida de software</td>
<td>31</td>
</tr>
<tr>
<td>5</td>
<td>Fases de SCRUM</td>
<td>31</td>
</tr>
<tr>
<td>6</td>
<td>Fases de XP</td>
<td>32</td>
</tr>
<tr>
<td>7</td>
<td>Relación del Programa académico de Ingeniería de Software con el Programa de investigación de la Facultad de Ingeniería</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>Relación del Programa académico de Ingeniería Industrial con el Programa de investigación de la Facultad</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Relación del Programa académico de Ingeniería Mecatrónica con el Programa de investigación de la Facultad de Ingeniería</td>
<td>63</td>
</tr>
</tbody>
</table>
Presentación

Este documento contiene los elementos fundamentales para la elaboración del programa de la Facultad de ingeniería de la Institución universitaria EAM, el cual dentro de su estructura contiene el problema macro de investigación y las sublíneas de investigación por cada uno de los programas académicos de la facultad. El programa de investigación está compuesto por los objetos de estudio y contenidos epistemológicos de los programas de Ingeniería de Software, Ingeniería Industrial e Ingeniería Mecatrónica, así como de elementos legales y conceptuales que parten de la filosofía institucional en coherencia con tendencias del entorno global, nacional y regional. El referente legal se enmarca desde la tendencia de la política global, nacional, departamental y local, teniendo como línea de partida los Objetivos de Desarrollo Sostenible, bajo la premisa de que la EAM forma Ciudadanos profesionales socialmente responsables.

La Institución Universitaria EAM define los Programas de investigación como la estrategia general de la Institución, que opera las intenciones investigativas institucionales con base en las necesidades del entorno y en las fortalezas internas, con el objetivo de crear oportunidades para la generación de conocimiento aplicado y aportar a la transformación de la sociedad. Las líneas de investigación equivalen al programa de investigación de cada facultad, por tanto deben ser el resultado de un proceso de acción ejercida entre los actores que intervienen de manera formativa y creativa a través de los diferentes ciclos de la formación profesional, a partir de las disertaciones, los discursos y las prácticas investigativas de innovación y desarrollo exigidas por la institución como direccionamiento para la formación del profesional, con el objetivo de desarrollar en el estudiante un espíritu crítico como ciudadano profesional, reflejado en el resultado del trabajo del docente en su proceso de aprendizaje.

Las sublíneas constituyen expresiones y segmentos del objeto de estudio de un programa de investigación, se concretan en proyectos afines y se definen como núcleo específico correspondiente a dicho programa de investigación. El fortalecimiento de los programas de investigación implica la generación de grupos de estudio que en un futuro se conviertan en Equipos Académicos de Investigación (EAI), los cuales parten de sus conocimientos, experiencia y acciones para la conformación de masa crítica propia de la Institución Universitaria EAM, la cual se extiende hacia los estudiantes mediante el programa de Cultura investigativa. Asegurando no solo la sostenibilidad de los programas de investigación sino la apropiación epistemológica por parte de estudiantes y docentes. También, comprende la interacción de los programas académicos en las diferentes disciplinas de la institución para la formulación de proyectos.
Propósitos del programa de investigación de la Facultad de Ingeniería:

a. Analizar en forma articulada problemas de investigación mediante un esquema de trabajo interdisciplinario de los Consejos Curriculares y los Equipos académicos de investigación de la Facultad.

b. Integrar el proceso curricular entre la enseñanza, el aprendizaje y la investigación.

c. Generar procesos de investigación pertinente en relación con el sector productivo de la región y el país.

d. Establecer mecanismos para el trabajo en redes de cooperación en investigación desde los campos disciplinares de cada programa de la Facultad de Ingeniería con otros programas, grupos de investigación e instituciones externas a la EAM.

Estructura:

El programa de investigación de la Facultad de Ingeniería está conformado por los siguientes componentes:

1. Componente administrativo
2. Componente disciplinar
3. Componente investigativo (contiene las sublíneas de investigación correspondientes a los programas académicos de la facultad).

1. Componente administrativo

1.1 Denominación del programa de investigación: Concepción, diseño y construcción de soluciones detalladas para problemas de las organizaciones y las personas.

1.2 Administrador del programa

Los Consejos Curriculares de cada uno de los programas académicos, el Consejo de Facultad y los respectivos Equipos Académicos de Investigación. El Consejo curricular es un cuerpo colegiado responsable de participar en la elaboración, modificación y actualización de las sublíneas de investigación y temas de estudio de cada uno de los programas de la facultad. Así como aportar a la actualización de los temas de estudio de los Equipos Académicos de investigación (EAI), mediante espacios para dialógicas e identificación de tendencias del entorno, necesidades, problemas, oportunidades y aportes que desde la disciplina de la facultad se puedan realizar a la sociedad.
El Consejo de Facultad administra y aprueba el programa de investigación y sublíneas, iniciativas de proyectos de investigación que son presentados en la Convocatoria anual interna de proyectos y propuestas de los semilleros de investigación a partir de estrategias de fomento a la Cultura investigativa tales como programa de formación de semilleros, talleres de cultura investigativa, espacio académico de investigación aplicada, convocatorias de auxiliares y practicantes de investigación, encuentros departamentales y regionales de semilleros a través de la Red regional de semilleros de investigación Eje Cafetero y Valle RREDSI; y la reglamento de trabajo de grado liderada desde cada una de las facultades, de investigación y practicantes de investigación. En la Institución Universitaria EAM, los grupos de investigación se denominan Equipos Académicos de Investigación (EAI).

1.3 Estrategias de transferencia de conocimiento a la comunidad académica y entorno

Es la transferencia de conocimiento al medio, los EAI deben generar estrategias de difusión y apropiación del conocimiento en la comunidad de impacto de los resultados, con el acompañamiento y apoyo de sus respectivas facultades

- Generación de impacto a través de asesorías y consultorías con organizaciones de los sectores públicos y privados.
- Reconocimiento de producción intelectual.
- Participación con ponencias en eventos nacionales e internacionales.
- Publicaciones científicas.
- Productos tecnológicos certificados o validados.
- Emprendimientos innovadores.
- Creación de empresas de base tecnológica.
- Generación de patentes.
- Establecimiento de alianzas con IES para la oferta de posgrados.
- Incorporación al currículo los resultados de investigación
- Ofrecimiento de servicios a través de portafolio.
- Apropiación tecnológica para grupos de interés.
- Premios y reconocimientos.
- Formación de ingenieros, que como ciudadanos profesionales socialmente responsables aporten al desarrollo sostenible de la región y el país.

1.4 Mecanismos de seguimiento y control del programa de investigación:

Desde el Consejo de Facultad se hará seguimiento semestral (periodo académico) y se producirá un reporte respecto a los resultados/novedades o modificaciones del mismo, al Comité Central de investigaciones. El plan anual se debe presentar en el último trimestre del año para estudio y eventual aprobación del Comité de I+D+I.

2. Componente disciplinar

La metodología del Programa de investigación está diseñada de manera que ésta sea equivalente a la Línea de investigación de la facultad; de la cual se derivan las sublíneas (componente investigativo) por cada uno de los programas académicos adscritos a la facultad.
El documento resultante se convierte en guía y orientador en la construcción epistémica y conceptual donde se fundamenta el programa en su esencia, contiene la información básica de cada programa académico que hace parte de la facultad:

2.1 Programas académicos de la Facultad

- Ingeniería de Software - 52410
- Ingeniería Industrial - 101621
- Ingeniería Mecatrónica - 52409

Tabla 1. Clasificación internacional normalizada de la educación adaptada para Colombia – CINE

<table>
<thead>
<tr>
<th>Campo amplio</th>
<th>Campo específico</th>
<th>Campo detallado</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 Tecnologías de la información y la comunicación (TIC)</td>
<td>061 Tecnologías de la información y la comunicación (TIC)</td>
<td>0611 Uso de computadores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0612 Diseño y administración de redes y bases de datos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0613 Desarrollo y análisis de software y aplicaciones</td>
</tr>
<tr>
<td>07 Ingeniería, industria y construcción</td>
<td>071 Ingeniería y profesiones afines</td>
<td>0711 Ingeniería y procesos químicos</td>
</tr>
<tr>
<td>07 Ingeniería, industria y construcción</td>
<td>071 Ingeniería y profesiones afines</td>
<td>Ingeniería y Procesos Químicos</td>
</tr>
</tbody>
</table>

2.2 Epistemología

2.2.1 Referente conceptual del problema de investigación:

La ingeniería es una profesión que se encarga de intermediar entre la ciencia en la tecnología; aplica los principios científicos en el desarrollo de nuevos procesos, instrumentos, herramientas, etc., para mejorar la salud y el bienestar de la sociedad [1].

Gráfico 1. Conceptos básicos

- **Ciencia**: Conjunto de conocimientos obtenidos mediante la observación y el razonamiento, sistemáticamente estructurados y de los que se deducen principios y leyes generales. [2]
• **Ingeniería**: Es el estudio y la aplicación de las distintas ramas de la tecnología. La actividad de la ingeniería supone la concreción de una idea en la realidad. Esto quiere decir que, a través de técnicas, diseños y modelos, y con el conocimiento proveniente de las ciencias, la ingeniería puede resolver problemas y satisfacer necesidades humanas y de las organizaciones. [3]

• **Tecnología**: Es la aplicación de un conjunto de reglas, procesos, conocimiento que se aplican en determinada área del que hacer productivo humano. [4]

• **Técnica**: Conjunto de saberes prácticos o procedimientos para obtener un resultado deseado. [4]

• **Modelo**: Es un conjunto de elementos materiales o abstractos y la determinaciones de las relaciones que guardan entre sí, que se define para representar de una manera simplificada la realidad. Es un símbolo o representación de las relaciones que se dan entre los diversos factores o variables de un problema. [5]

• **Sistema**: Un sistema es un conjunto de elementos que suman esfuerzos colaborando de manera coordinada y con una constante interacción para alcanzar objetivos en común, es claramente identificable por una frontera que lo delimita y se encuentra operando en un ambiente o entorno con el cual puede guardar una estrecha relación; cada uno de estos elementos puede a su vez, ser un sistema de menor complejidad o tamaño llamado subsistema, y por el contrario cada uno de esos sistemas pueden ser un elemento de un sistema más grande o supersistema. [6]

• **Teoría general de sistemas (TGS)**: No busca solucionar problemas o intentar soluciones prácticas, pero si producir teorías y formulaciones conceptuales que puedan crear condiciones de aplicación en la realidad empírica. La TGS afirma que las propiedades de los sistemas no pueden ser descritas significativamente en términos de sus elementos separados. La compresión de los sistemas solamente se presenta cuando se estudian los sistemas globalmente, involucrando todas las interdependencias de sus subsistemas. [7]

La TGS se fundamenta en tres premisas básicas, a saber:

a. Los sistemas existen dentro de los sistemas
b. Los sistemas son abiertos
c. Las funciones de un sistema dependen de su estructura
2.3 Metodología

2.3.1 Enfoque metodológico

Método de Ingeniería

La naturaleza de los problemas que deben resolver los ingenieros varía dependiendo de las diferentes ramas de la ingeniería. De hecho, un ingeniero puede afrontar un gran número de problemas durante el curso de sus actividades diarias. Debido a la variabilidad de los diseños de ingeniería, no existe un procedimiento o una lista de pasos definitiva que se adapte siempre a los problemas que surgen. Sin embargo, los ingenieros tienden a tratar los problemas de una manera determinada. Ciertamente, el método de ingeniería para enfocar y resolver los problemas difiere notablemente del utilizado por la mayoría de los otros profesionales. Los ingenieros están capacitados para pensar en términos analíticos y objetivos, y para enfocar los problemas de manera metódica y sistemática.

La siguiente grafica muestra las etapas para desarrollar el método científico. [4]

Gráfico 2. Etapas método científico

![Gráfico 2. Etapas método científico](attachment:grafico_2.png)

Método Heurístico

El método heurístico se configura a partir de una anomalía detectada en la práctica cotidiana. Esta anomalía no exige preguntas de investigación, sino que demanda soluciones. Las soluciones se pueden o no expresar en lenguaje matemático, sin embargo, no son hipótesis que se sometan a contrastación a través de técnicas de contrastación. Por el contrario, la solución a un problema de ingeniería o anomalía detectada en el campo de la ingeniería es el resultado de la aplicación de una norma práctica que, a su vez, ha sido desarrollada en el ámbito de la ingeniería.
2.4 Problema de Investigación

Insuficiente nivel de apropiación y aplicación de leyes, teorías, métodos, técnicas, diseños, modelos y procedimientos, para el aprovechamiento práctico del conocimiento en la resolución de problemas y necesidades de las organizaciones y las personas.

2.4.1 Impactos

Internos:
- Optimización del servicio al cliente en las diferentes dependencias.
- Preparación de estudios de factibilidad para la apertura de nuevos programas académicos.
- Diseño de la batería de indicadores para el sistema integrado de gestión.
- Diseño e implementación de planes de mejoramiento tecnológico (PMT).
- Apropiación tecnológica de la comunidad académica.
- Automatización del sistema de ingreso de personas a los diferentes bloques del campus.

Externos:
- Fortalecimiento de la apropiación tecnológica para diversos grupos de interés, buscando la utilización pertinente y racional de la tecnología.
- Vinculación con observatorios locales, regionales y nacionales (empresariales, tecnología, empleo, CTI, emprendimiento, Red de ciudades como vamos, entre otros).
- Vinculación a proyectos especiales del MINTIC, Talento Digital, Apps.co, entre otros.
- Participación o realización de estudios locales, regionales y nacionales en alianza con sector público y privado.
- Fortalecimiento del estudio de las ciencias básicas en las instituciones de educación media del Municipio de Armenia.
Intervención del entorno para aportar en la solución de problemas que afectan la calidad de vida de las personas:

- Ingeniería de Software: Diseño de APP que mejoren la calidad de vida de las personas (Monitorio de funciones vitales).
- Ingeniería Industrial: Diseño y simulación de espacios productivos de acuerdo a alternativas de escenarios de producción.
- Ingeniería Mecatrónica: Diseño de bioelementos para personas en condición de discapacidad.

2.4.2 Información básica de los Equipos Académicos de investigación de la facultad

Equipo Académico Investigación en Ingeniería de Software “INGESOFT”

Registro Colciencias COL0167528 de septiembre de 2015

Reconocido mediante Acta de Consejo de Facultad N.° 39 de Septiembre 28 de 2015

Vínculo GrupLac Colciencias

Tabla 2. Equipo académico de investigación - INGESOFT

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Equipo Académico de Investigación en Ingeniería de Software “INGESOFT”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institución</td>
<td>Institución Universitaria EAM</td>
</tr>
<tr>
<td>Ciudad</td>
<td>Armenia</td>
</tr>
<tr>
<td>Departamento</td>
<td>Quindío</td>
</tr>
<tr>
<td>Líder</td>
<td>Johnny Alexander Salazar Cardona</td>
</tr>
<tr>
<td>E-mail</td>
<td>jasalazar@eam.edu.co</td>
</tr>
<tr>
<td>Año creación</td>
<td>2015</td>
</tr>
<tr>
<td>Programa nacional de ciencia y tecnología</td>
<td>Programa de ciencia, tecnología e innovación en electrónica, telecomunicaciones e informática</td>
</tr>
</tbody>
</table>
| Líneas de acción del programa nacional de ciencia y tecnología | - Buenas prácticas de desarrollo de software.
- Arquitecturas empresariales.
- Ubicuidad y usabilidad
- Sistemas centrados en el usuario
- Nuevas tendencias de desarrollos en la web.
- Desarrollo de contenidos y aplicaciones digitales para mipymes en plataformas móviles e interoperabilidad entre las mismas. |

Programa de investigación que orienta a INGESOFT: Concepción, diseño y construcción de soluciones detalladas para problemas de las organizaciones y las personas.

Problema de investigación de la facultad: Insuficiente nivel de apropiación y aplicación de leyes, teorías, métodos, técnicas, diseños, modelos y procedimientos, para el aprovechamiento práctico del conocimiento en la resolución de problemas y necesidades de las organizaciones y las personas.
Sublínea(s) de investigación que aportan al programa de investigación desde INGESOF: Ingeniería de Software

Problema de investigación de la sublínea: Bajo nivel de innovación tecnológica para la solución de necesidades de las personas y las organizaciones referentes al manejo y tratamiento de información.

Objetivo: Ofrecer soluciones integrales para la toma decisiones de las organizaciones y las personas, mediante metodologías, herramientas y la aplicación de buenas prácticas de la ingeniería de software.

En función de cuáles de los 17 objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD) se enmarca INGESOF

- **Objetivo n.º 4:** Garantizar una educación inclusiva, equitativa y de calidad y promover oportunidades de aprendizaje durante toda la vida para todos
- **Objetivo n.º 9:** Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación:

Descripción de INGESOF

IngeSoft es un grupo de investigación enfocado en el mejoramiento de los procesos de desarrollo de software, abarcando aspectos de buenas prácticas de desarrollo, seguridad, administración de requerimientos, usabilidad, testing, evaluación de software, industrialización y procesos de desarrollo personal y en equipo. Adicionalmente con el fin de responder a las necesidades y tendencias mundiales, también se enfoca en Cloud Computing, desarrollos web - móviles, Business Intelligence y Minería de datos para el descubrimiento de conocimiento.

PITCH

IngeSoft define procesos estandarizados de industrialización de software, con el fin estandarizar actividades de industrialización (Desarrollo de software en grandes volúmenes, con bajo tiempo de desarrollo y alta calidad), con el fin de posicionar el sector como uno de clase mundial. Adicionalmente, al ser el Quindío una región enfocada a la agroindustria y el sector turístico, se deben buscar mecanismos por los cuales, por medio de las TIC y las tendencias mundiales se pueda potencializar estos aspectos.

Equipo de investigadores

Johnny Alexander Salazar Cardona – jasalazar@eam.edu.co
David Alberto Angarita García - adavidalberto@eam.edu.co
Erika Johana Caicedo Arias – erikcaicedo@eam.edu.co

Jóvenes Investigadores Colciencias

Oscar Orlando Aristizábal Jaimes (Antes grupo de investigación SEAGRO)

Grupos de semilleros reconocidos institucionalmente y registrados en Colciencias

Análisis, Diseño y Desarrollo de software - AD2S

Temas de estudio

Requerimientos
Experiencia de usuario
Desarrollo Web – Móvil – Multiplataforma
Pruebas de Software
SaaS y PaaS
Web Semántica
IoT
Inteligencia de Negocios
KDP (Knowledge Discovery Process)
Procesos de desarrollo PSP - TSP.
Equipo Académico de Investigación de ingeniería Industrial en análisis y optimización de sistemas “IDAOS”

Reconocido mediante Acta de Consejo de Facultad N.° 48 de noviembre 20 de 2017
Registro Colciencias COL0191209 de 07 de diciembre de 2017
Vínculo GrupLac Colciencias

<table>
<thead>
<tr>
<th>Tabla 3. Equipo académico de Investigación - IDAOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre</td>
</tr>
<tr>
<td>Institución</td>
</tr>
<tr>
<td>Ciudad</td>
</tr>
<tr>
<td>Departamento</td>
</tr>
<tr>
<td>Líder</td>
</tr>
<tr>
<td>E-mail</td>
</tr>
<tr>
<td>Año creación</td>
</tr>
<tr>
<td>Programa nacional de ciencia y tecnología</td>
</tr>
</tbody>
</table>
| Líneas de acción del programa nacional de ciencia y tecnología | • Transporte y Logística
• Tecnologías Limpias
• Agroindustria
• Aplicación de TIC para la industria
• Desarrollo y aplicación de nuevos materiales y productos para la industria con criterios de sostenibilidad
• Uso racional y eficiente de materias primas
• Bienes y Servicios
• Servicios TI & Software
• Autopartes |

Programa de investigación que orienta a IDAOS: Concepción, diseño y construcción de soluciones detalladas para problemas de las organizaciones y las personas.

Problema de investigación de la facultad: Insuficiente nivel de apropiación y aplicación de leyes, teorías, métodos, técnicas, diseños, modelos y procedimientos, para el aprovechamiento práctico del conocimiento en la resolución de problemas y necesidades de las organizaciones y las personas.

Sublínea(s) de investigación que aportan al programa de investigación desde IDAOS: Análisis y Optimización Sistemas Productivos de Bienes y Servicios

Problema de investigación de la sublínea: Ausencia de buenas prácticas para el diseño y optimización de sistemas productivos de bienes y servicios en las organizaciones

Objetivo: Ofrecer soluciones para la productividad y eficiencia de procesos productivos de bienes y servicios en las organizaciones, mediante la integración de recursos humanos, económicos, financieros y tecnológicos

En función de cuáles de los 17 objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD) se enmarca IDAOS

• Objetivo n.° 8. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos.
• Objetivo n.° 9. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación
• Objetivo n.° 12. Garantizar modalidades de consumo y protección sostenibles.
Descripción
IDAOS es un grupo de investigación que analiza y optimiza sistemas industriales, agroindustriales y de prestación de servicios regionales y locales que presentan dificultades en sus procesos u operaciones, promoviendo la productividad, el crecimiento económico, la industrialización inclusiva y sostenible del departamento.

PITCH
IDAOS enfoca sus conocimientos académicos en el desarrollo y análisis de procesos u operaciones ejecutadas en los sistemas industriales, agroindustriales y de prestación de servicios, innovando y optimizando, con el objetivo de tener empresas productivas y eficientes en la región.

Equipo de investigadores
- Luis Felipe Ríos Herrera - lrios@eam.edu.co
- Juan Diego Montoya Villegas - jmontoya@eam.edu.co

Jóvenes Investigadores Colciencias
- N/A

Grupos de semilleros reconocidos institucionalmente y registrados en Colciencias
SAOPE (Semillero en Análisis y Optimización de Procesos Empresariales)
Sistemas en modelado y optimización de sistemas logísticos

Temas de estudio
- Producción
- Logística
- Investigaciones operaciones
- Análisis de datos
- Administración y finanzas
- Gestión ambiental

Equipo Académico Investigación en Sistemas de Control y Automatización aplicados a procesos de Transformación “SCAP”
Reconocido mediante Acuerdo n.° 06 del 31 de agosto de 2010 de Consejo Académico
Registro Colciencias COL0110759 de Agosto de 2010
Vínculo GrupLac Colciencias

Tabla 4. Equipo académico de investigación - SCAP

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Equipo Académico de Investigación en Sistemas de Control y Automatización aplicados a procesos de Transformación “SCAP”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institución</td>
<td>Institución Universitaria EAM</td>
</tr>
<tr>
<td>Ciudad</td>
<td>Armenia</td>
</tr>
<tr>
<td>Departamento</td>
<td>Quindío</td>
</tr>
<tr>
<td>Líder</td>
<td>Julián Alberto Buitrago Giraldo</td>
</tr>
<tr>
<td>E-mail</td>
<td>jbuitrago@eam.edu.co</td>
</tr>
<tr>
<td>Año creación</td>
<td>2010</td>
</tr>
<tr>
<td>Programa nacional de ciencia y tecnología</td>
<td>Desarrollo tecnológico e innovación industrial Electrónica, telecomunicaciones e informática</td>
</tr>
</tbody>
</table>
Líneas de acción del programa nacional de ciencia y tecnología

- Ingeniería Mecánica, Ingeniería Naval, logística y transporte
- Tecnologías limpias
- Aplicación de TIC para la industria
- Mecatrónica, robótica y automatización
- Uso racional y eficiente de la energía, uso de otras alternativas de energía para la industria
- Bienes y Servicios Sector Eléctrico
- Autopartes
- Electrónica

Programa de investigación que orienta a SCAP: Concepción, diseño y construcción de soluciones detalladas para problemas de las organizaciones y las personas.

Problema de investigación de la facultad: Insuficiente nivel de apropiación y aplicación de leyes, teorías, métodos, técnicas, diseños, modelos y procedimientos, para el aprovechamiento práctico del conocimiento en la resolución de problemas y necesidades de las organizaciones y las personas.

Sublínea(s) de investigación que aportan al programa de investigación desde SCAP: Automatización y diseño mecatrónico

- **Problema de investigación de la sublínea:** Bajos niveles de integración de tecnologías para la solución de necesidades de personas y organizaciones, referentes a la automatización y control de procesos productivos de bienes y servicios.
- **Objetivo:** Diseñar e implementar soluciones tecnológicas para las organizaciones y las personas mediante la integración de la electrónica, la mecánica y la informática.

En función de cuáles de los 17 objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD) se enmarca SCAP

- **Objetivo n.° 2:** Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible
- **Objetivo n.° 6:** Garantizar la disponibilidad de agua y su gestión sostenible y el saneamiento para todos
- **Objetivo n.° 7:** Garantizar el acceso a una energía asequible, segura, sostenible y moderna para todos
- **Objetivo n.° 8:** Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos
- **Objetivo n.° 9:** Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación

Descripción

SCAP es un grupo de investigación que desarrolla sistemas y procesos automatizados, que resuelvan problemáticas regionales y locales en el sector industrial para mejorar la productividad y el desarrollo económico y sostenible del departamento, enfocándose en la búsqueda de alternativas en proceso de desarrollo regional.

PITCH

SCAP enfoca sus conocimientos académicos en el desarrollo de sistemas automatizados confiables que propendan por el desarrollo de la Región. Así mismo proyecta sus esfuerzos en analizar sistemas que apoyen los procesos de producción actuales con el objetivo de optimizarlos y generar mayores recursos en el sector Agroindustrial.

Equipo de investigadores

- Julián Alberto Buitrago Giraldo - jbuitrago@eam.edu.co
- Ana María Tamayo Ocampo - atamayo@eam.edu.co
- Néstor Iván Marín Peláez - nestorivanmarin@eam.edu.co
- Alexander Vasco Orozco - avasco@eam.edu.co
Jóvenes Investigadores Colciencias
- N/A

Grupos de semilleros reconocidos institucionalmente y registrados en Colciencias
- Automatización y diseño mecatrónico – ADM

Temas de estudio
- Energías limpias y renovables
- Diseño de automatismos
- Adquisición y procesamiento de señales instrumentadas
- Robótica Móvil
- Animatrónica
- Procesamiento de imágenes

2.4.3 Articulación del programa de investigación con los temas de estudio de los EAI, las sublíneas y áreas de investigación de cada uno de los programas académicos de la facultad.

Tabla 5. Articulación del el programa de investigación con los temas de estudio de los EAI, las sublíneas y áreas de investigación

<table>
<thead>
<tr>
<th>Nombre del Programa</th>
<th>Problema del Programa</th>
<th>Programa académico</th>
<th>SUBLÍNEA (s)</th>
<th>Problema de investigación</th>
<th>Objetivo del problema de investigación</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Conocimiento, diseño y construcción de soluciones detalladas para problemas de las organizaciones y las personas.</td>
<td>Ingeniería de Software</td>
<td>Bajo nivel de innovación tecnológica para la solución de necesidades de las personas y las organizaciones referentes al manejo y tratamiento de información.</td>
<td>Ofrecer soluciones integrales para la toma de decisiones de las organizaciones y las personas, mediante metodologías, herramientas y la</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Insuficiente nivel de apropiación y aplicación de leyes, teorías, métodos, técnicas, diseños, modelos y procedimientos, para el aprovechamiento práctico del conocimiento en la resolución de problemas y necesidades de las organizaciones y las personas.</td>
<td>Ingeniería Industrial</td>
<td>Ausencia de buenas prácticas para el diseño y optimización de sistemas productivos de bienes y servicios en las organizaciones.</td>
<td>Ofrecer soluciones para la productividad y eficiencia de procesos productivos de bienes y servicios en las organizaciones, mediante la integración de recursos humanos, económicos,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ingeniería Mecatrónica</td>
<td>Bajos niveles de integración de tecnologías para la solución de necesidades de personas y organizaciones, referentes a la automatización y control de procesos productivos de bienes y servicios.</td>
<td>Diseñar e implementar soluciones tecnológicas para las organizaciones y las personas mediante la integración de la electrónica, la mecánica y la informática</td>
</tr>
<tr>
<td>Áreas de investigación</td>
<td>EQUIPÓ ACADÉMICO DE INVESTIGACIÓN-EAI</td>
<td>Temas de investigación del EAI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Supply Chain Management - Investigación y administración de operaciones - Estadística avanzada - Gestión empresarial y RRHH</td>
<td>Equipo Académico de Investigación en ingeniería industrial en análisis y optimización de sistemas “IDAOS”</td>
<td>- Producción - Logística - Investigaciones operaciones - Análisis de datos - Administración y finanzas - Gestión ambiental</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Automatización. - Instrumentación y control - Inteligencia artificial - Sistemas embebidos - Diseño mecatrónico - Robótica</td>
<td>Equipo Académico de Investigación en Sistemas de Control y Automatización aplicados a procesos de Transformación “SCAP”</td>
<td>- Energías limpias y renovables - Diseño de automatismos - Adquisición y procesamiento de señales instrumentadas - Robótica Móvil - Animatrónica - Procesamiento de imágenes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Consejos curriculares de cada Programa Académico

BIBLIOGRAFÍA

3. Componente investigativo

3.1 Sublínea del programa académico Ingeniería de Software

Tabla 6. Denominaciones de acuerdo al nivel de formación

<table>
<thead>
<tr>
<th>Nivel / Denominación</th>
<th>Semestres</th>
<th>SNIES</th>
<th>Créditos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecnología en Desarrollo de Software</td>
<td>6</td>
<td>107297</td>
<td>93</td>
</tr>
<tr>
<td>Ingeniería de Software</td>
<td>9</td>
<td>52410</td>
<td>153</td>
</tr>
</tbody>
</table>

a. Código CINE:

Tabla 7. Código CINE

<table>
<thead>
<tr>
<th>Campo amplio</th>
<th>Campo específico</th>
<th>Campo detallado</th>
</tr>
</thead>
<tbody>
<tr>
<td>06 Tecnologías de la información y la comunicación (TIC)</td>
<td>061 Tecnologías de la información y la comunicación (TIC)</td>
<td>0611 Uso de computadores</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0612 Diseño y administración de redes y bases de datos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0613 Desarrollo y análisis de software y aplicaciones</td>
</tr>
</tbody>
</table>

b. Objeto de estudio: Analizar, diseñar y construir soluciones basadas en software, a partir de la aplicación de los principios de las ciencias básicas y el método de ingeniería, manteniendo criterios de calidad, para obtener software confiable, eficiente y pertinente con las necesidades de las organizaciones, clientes y usuarios.

c. Objetivo de formación: Propender por la formación de profesionales con competencias para diseñar y construir soluciones basadas en software; asegurando principios y criterios de calidad, eficiencia y rendimiento, para contribuir al desarrollo tecnológico de las organizaciones.

d. Roles del egresado:
 - En la industria del software, específicamente en procesos de ingeniería (Analista, Arquitecto, Desarrollador, Testing, Diseñador).
 - Director de centros de tecnología, Administrador de sistemas de información.
 - En su propia empresa de consultoría y/o asesoría en asuntos específicos de la Ingeniería de Software.
3.1.1 Denominación de sublínea: Ingeniería de Software

3.1.1.1 Administrador de sublínea: Consejo curricular del programa y el Equipo académico de investigación INGESOF

3.1.2 Problema de investigación

Bajo nivel de innovación tecnológica para la solución de necesidades de las personas y las organizaciones referentes al manejo y tratamiento de información.

3.1.2.1 Objetivo de investigación

Ofrecer soluciones integrales para la toma decisiones de las organizaciones y las personas, mediante metodologías, herramientas y la aplicación de buenas prácticas de la ingeniería de software.

3.1.2.2 ¿Qué problema soluciona, y cuáles son las aplicaciones?

Tabla 8. Problemas y soluciones

<table>
<thead>
<tr>
<th>Problemas</th>
<th>Aplicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Ausencia de buenas prácticas de desarrollo de software.</td>
<td>• Desarrollo de programas computacionales para optimizar la gestión, control y uso, según su entorno de aplicación, facilitando la administración de datos y su uso en diferentes contextos (desde el campo industrial-control en la fabricación de productos en masa, empresarial-sistemas de información bancarios, ventas, trámites del sector público, sector salud-sistemas para el control de los signos vitales de una persona, aspectos básicos de la vida cotidiana-georreferenciación, chats, entre otros).</td>
</tr>
<tr>
<td>• Deficiente implementación de metodologías para procesos de ingeniería de software.</td>
<td>• Desarrollo de software enfocado al cloud computing, computación ubicua y la aplicación de inteligencia de negocios y minería de datos para el descubrimiento de conocimiento, con el fin de profundizar en estos nuevos paradigmas que generen un alto impacto en el sector del desarrollo de software.</td>
</tr>
<tr>
<td>• Ausencia de buenas prácticas para el tratamiento y análisis grandes volúmenes de datos.</td>
<td>• Gestionar y administrar los datos abiertos para el descubrimiento de conocimiento y toma de decisiones y la generación de productos y servicios a partir de desarrollos web y móviles.</td>
</tr>
<tr>
<td>• Inadecuada o insuficiente implementación de software como producto o servicio.</td>
<td>• Implementar buenas prácticas de aseguramiento de la calidad del software (testing, métricas, usabilidad, entre otros).</td>
</tr>
<tr>
<td>• Bajo nivel de ingreso de nuevos estudiantes a programas de ingeniería de software y afines.</td>
<td></td>
</tr>
</tbody>
</table>
3.1.2.3 ¿Contribución a la solución de problemas nacionales?

La sublínea de investigación en Ingeniería de Software contribuye a la solución de problemas en cualquier de los tres sectores económicos debido al crecimiento que ha tomado la industria del software y TI en nuestro país, está claro que las personas no pueden vivir sin el software debido a que facilita las actividades y tareas, a optimizar tiempos y hacer la vida más fácil día a día.

En la actualidad, el volumen de datos estructurados y no estructurados que generan las organizaciones es elevado sin importar su naturaleza, siendo todos estos sistematizados para su fácil gestión [1]. Para gestionar estos grandes volúmenes de datos es necesario sistemas de información que permitan controlar toda esta información de una manera eficiente y eficaz, desarrollados con elementos que garanticen la calidad del sistema como tiempos de respuesta, usabilidad, integridad de datos y una arquitectura adecuada que permita escalabilidad y fácil mantenimiento de este. En muchas ocasiones, estos datos solo son gestionados, y no se les da un valor agregado para la mejora de procesos y generación de valor agregado al objetivo organizacional de las entidades. Para lograr lo anteriormente planteado, existen metodologías que permite a un equipo de desarrollo de software, entender los requerimientos y trabajar de manera coordinada para obtener software de calidad como lo es SCRUNM [2], XP (Programación extrema) [3] entre muchas otras. Y respecto a la generación de valor agregado a los datos existe un concepto denominado inteligencia de negocios o BI (Business Intelligence), el cual ofrece un abanico de estrategias y tecnologías para el tratamiento de los datos, su análisis y aprovechamiento para apoyar la toma de decisiones y obtener ventajas competitivas en el mercado [4]. Este concepto se encuentra inmerso en un área denominada gestión del conocimiento o KM (Knowledge Management), el cual encierra toda la conceptualización de descubrimiento de conocimiento oculto en un conjunto de datos, como su gestión y despliegue en un entorno determinado, brindando estrategias enfocadas a la creación y administración de conocimiento a partir de análisis de datos existentes en una organización [5].

Los procesos de BI son ampliamente implementados en procesos de desarrollo web, haciendo uso de tecnologías vanguardistas de desarrollo de software y facilitando el acceso al análisis de resultados [6]. Lo anteriormente descrito es sustentado y justificado académicamente, debido a que actualmente en el mundo tecnológico, se generan grandes volúmenes de datos de una manera constante, siendo necesaria la integración de diferentes elementos para poder tratar y acceder de una manera eficiente a la información o conocimiento generado a partir de todos los datos estudiados [7]. En una sociedad basada en el conocimiento se pueden utilizar procesos de desarrollo de software e inteligencia de negocios combinados con gestión del conocimiento para acelerar el proceso de descubrimiento de información, ya sea en el ámbito empresarial o en cualquier proyecto que tenga como objetivo principal el descubrimiento de conocimiento o información en bases de datos, logrado a partir de la implementación de los procesos de BI existentes para alcanzar metodologías ágiles demostrando según el ciclo de vida generado, adaptarlo según las necesidades del caso de estudio Santana and Aparecida [8].

Entre los métodos más utilizados en el campo de BI se encuentran la analítica visual o VA (Visual Analytics), enfocada a las visualizaciones de información y el resultado de los datos tratados, además de los métodos de la aplicación de minería de datos a través de la web. Entre los métodos de acceso a datos en línea se encuentra OLAP (On-line Analytical Processing) que permite la optimización de
consultas de análisis de datos en línea a bases de datos multidimensionales orientados totalmente en la web, entre otros. También se encuentran los Dashboards y ScoreBoards para la prestación gráfica de resultados y el hallazgo de información adicional a los procesos de minería de datos, siendo estos elementos de VA, siendo estos implementados por desarrolladores de software y analistas de datos utilizando tecnologías de punta o herramientas pre establecidas. Existen Varios formas de relación entre gestión del conocimiento, con procesos de BI y desarrollo de software, ya que mientras la gestión del conocimiento abarca el conocimiento tácito y explícito, los procesos de BI se centran en el conocimiento explícito [9] y logrado a partir de software construido de alta calidad.

3.1.2.4 Relación de la sublínea con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD)

De acuerdo con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD) [10], se evidencia que la sublínea de investigación del programa de ingeniería de Software se enmarca entre el siguiente objetivo:

Objetivo 4: Garantizar una educación inclusiva, equitativa y de calidad y promover oportunidades de aprendizaje durante toda la vida para todos

Desde 2000, se ha registrado un enorme progreso en la meta relativa a educación primaria universal. La tasa total de matrícula alcanzó el 91% en las regiones en desarrollo en 2015 y la cantidad de niños que no asisten a la escuela disminuyó casi a la mitad a nivel mundial. También se han registrado aumentos significativos en las tasas de alfabetización y más niñas que nunca antes asisten hoy a la escuela. Sin duda, se trata de logros notables.

Sin embargo, el progreso también ha enfrentado grandes desafíos en las regiones en desarrollo debido a los altos niveles de pobreza, conflictos armados y otras emergencias. En Asia Occidental y el Norte de África, los conflictos armados en curso han aumentado la proporción de niños que no asisten a la escuela, constituyendo una tendencia preocupante.

Si bien África subsahariana consiguió los avances más notables en la matrículación en la escuela primaria entre todas las regiones en desarrollo (de 52% en 1990 a 78% en 2012), aún hay grandes disparidades, especialmente entre las zonas rurales y urbanas. Por su parte, los menores de los hogares más pobres tienen cuatro veces más probabilidades de no asistir a la escuela que aquellos provenientes de familias con más recursos.

El objetivo de lograr una educación inclusiva y de calidad para todos se basa en la firme convicción de que la educación es uno de los motores más poderosos y probados para garantizar el desarrollo sostenible. Con este fin, el objetivo busca asegurar que todas las niñas y niños completen su educación primaria y secundaria gratuita de aquí a 2030. También aspira a proporcionar acceso igualitario a formación técnica asequible y eliminar las disparidades de género e ingresos, con el fin de lograr acceso universal a educación superior de calidad.

Objetivo 9: Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación: La inversión sostenible en infraestructura y la innovación son motores fundamentales del crecimiento y el desarrollo económico. Con más de la mitad de la
población mundial viviendo en ciudades, el transporte masivo y la energía renovable son cada vez más importantes, así como también el crecimiento de nuevas industrias y de las tecnologías de la información y las comunicaciones.

Los avances tecnológicos también son esenciales para encontrar soluciones permanentes a los desafíos económicos y ambientales, al igual que la oferta de nuevos empleos y la promoción de la eficiencia energética. Otras formas importantes para facilitar el desarrollo sostenible son la promoción de industrias sostenibles y la inversión en investigación e innovación científicas.

Más de 4.000 millones de personas aún no tienen acceso a Internet y el 90% proviene del mundo en desarrollo. Reducir esta brecha digital es crucial para garantizar acceso igualitario a la información y el conocimiento y, en consecuencia, para promover la innovación y el emprendimiento.

3.1.2.5 Relación del problema con la Política nacional de desarrollo productivo CONPES 3866 de agosto 08 de 2016

La política nacional de desarrollo productivo CONPES 3866 [11] busca generar instrumentos para solucionar fallas de mercado, de gobierno o de articulación a nivel de la unidad productora, para aumentar la productividad y la diversificación del aparato productivo colombiano hacia bienes y servicios más sofisticados. Algunos de los principios que fundamentan esta política son mejorar las capacidades de innovar, de absorber y transferir conocimiento e implementar la tecnología en las unidades productoras. Otro pilar de esta política es aumentar la eficiencia y efectividad en la provisión de capital humano como un factor de producción que conlleve a generar un entorno que promueva los encadenamientos, la calidad y la exposición de los bienes y servicios nacionales a mercados internacionales.

El plan de acción de la política nacional de desarrollo productivo CONPES 3866 involucra varias estrategias para su cumplimiento como el aprovechamiento de las tecnologías existentes, asistencia técnica agropecuaria, inversión en proyectos de innovación, implementación de proyectos regionales para la innovación y emprendimiento.

La necesidad de integrar la tecnología con procesos de desarrollo de software, que se plantea en el problema de investigación de la sublínea, involucra implícitamente algunos aspectos como la necesidad de innovar para mejorar los procesos administrativos, apoyar la toma de decisiones, aumentar la productividad y eficiencia de los trabajadores, incrementar la calidad de los productos y servicios generados, etc. De acuerdo con estos aspectos y a los planteamientos encontrados en esta política, se encuentra una amplia relación entre estos elementos.

3.1.2.6 Relación de la sublínea con los sectores del Plan de Acuerdo estratégico departamental de ciencia, tecnología e innovación del Quindío (PAED)

Tomando como base el documento maestro Plan y Acuerdo Estratégico Departamental en Ciencia, Tecnología e Innovación Departamento De Quindío [12], establece seis focos temáticos estratégicos; desde al sublínea de Ingeniería de Software se considera que los focos propuestos en el documento pueden ser relacionados de manera directa o indirecta debido a que el desarrollo del software está implícito en cualquier sector dado que día a día crece el desarrollo tecnológico y digital facilitando la
vida de las personas y las organizaciones, por lo anterior se considera que desde la sublínea se pueden enmarcar los siguientes focos:

- **Foco 3**: Comercio, Industria y Turismo
- **Foco 4**: Educación
- **Foco 6**: Tecnologías de la Información y las Comunicaciones

3.1.2.7 Relación de la sublínea con los sectores priorizados del Plan regional de competitividad del Quindío 2032

El plan regional de competitividad del Quindío 2032 [13] tiene establecidos los siguientes objetivos para el crecimiento del departamento:

- Un departamento ambientalmente sostenible y sustentable
- Equitativo, justo e incluyente socialmente
- Modelo de asociatividad e integración regional
- Con un nivel de Ingreso Medio Alto per cápita
- Entre los cinco Departamentos más competitivos del país
- Fundamentado en el aumento y diversificación de la productividad exportadora
- Con una actividad turística y otros servicios de alto valor agregado
- Desarrollo de competencias, formación laboral, investigación y alta tecnología, en conectividad con el mundo globalizado.

El desarrollo de este plan se hará a través de la política de transformación productiva de la región, que se fundamenta en diferentes ejes estratégicos como crecimiento e internacionalización de la economía, salto a una plataforma territorial productiva, competitiva y ambientalmente sustentable; Formalización y emprendimiento, educación y talento humano para la competitividad y la productividad, política pública para la competitividad, ciencia, innovación, tecnología y desarrollo. Estas iniciativas buscan tener un alto impacto social y requieren ser complementadas con herramientas transversales tales como la educación, la ciencia, innovación, tecnología de tal manera que conduzcan a mejorar la competitividad del Departamento.

Otro aspecto importante en el Plan Regional de Competitividad del Quindío 2032 es la identificación de tres sectores productivos como ejes principales de desarrollo, (sector de servicios, sector agroindustrial, sector de manufactura), el sector en el cual la sublínea tiene cabida es el sector de servicios específicamente en el sub-sector de *software* y *TI* siendo este el sector con mayor potencial de crecimiento en los últimos años.
3.1.2.8 Grupos, redes e instituciones que trabajen a nivel nacional e internacional relacionadas con el problema de la Sublínea de investigación

Tabla 9. Grupos, redes e instituciones relacionadas con el problema de la sublínea de investigación

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Temas de estudio y/o áreas de interés y/o actividad principal de la empresa</th>
<th>Contacto</th>
<th>Ciudad/país</th>
<th>Sitio web</th>
</tr>
</thead>
</table>
| Grupo GIISTA | • Línea de Ingeniería de Software
• Línea de Apoyo Tecnológico para Ambientes de Aprendizaje
• Línea de Gestión del Conocimiento | Ricardo De Jesús Botero Tabares | Medellín/Colombia | http://www.tdea.edu.co/index.php/investiga/grupos-de-investigacion/facultad-de-ingenieria2/grupo-giista |
| Grupo GIDIS | • Ingeniería de Software
• Software educativo y sistemas multimedia | Judith del Pilar Rodríguez Tenjo | Cúcuta/Colombia | https://ww2.ufps.edu.co/vicerrectoria/vicerrectoria-asistente-de-investigacion-y-extension/1449 |
| Grupo GRINSOFT | • Arquitectura Tecnológica
• Línea de Investigación en Desarrollo de Software | Sandra Patricia Mateus Santiago | Medellín/Colombia | http://scienti.colciencias.gov.co:8085/gruplac/jsp/visualiza/visualizagr.jsp?nro=0000000004720 |
| Gestión y Desarrollo de Soluciones Tecnológicas de Ingeniería para las Organizaciones | • Desarrollo de software | Richar Alberto Rangel Martínez | Bogotá/Colombia | http://www.sanmateo.edu.co/documentos/grupos-investigacion.pdf |
| Ingeniería de Software | • Calidad de Software | Mauricio Fernando Alba Castro | Manizales/Colombia | https://www.autonoma.edu.co/investigacion/grupos-de-investigacion/ingeneria/ingenieria-de-software |
| Grupo de Investigación Ingeniería y Calidad de | • Calidad
• Disciplinas Técnicas de la Ingeniería de Software | Yaimí Trujillo Casañola | La Habana/Cuba | http://www.uci.cu/investigacion-y-desarrollo/grupos-de-investigacion/grupo-de- |
3.1.2.9 Contexto institucional

El esfuerzo y acompañamiento nacional que actualmente se promueve en la formación de personal capacitado en el desarrollo de software, impulsa a las instituciones educativas para apostar a este campo de conocimiento, buscando y fomentando una formación de alta calidad en sus profesionales, desarrollando habilidades blandas y duras, brindando espacios de trabajo e investigación en tecnologías y metodologías de vanguardia que perfeccionen el proceso de desarrollo de software, aumentando la calidad del producto final. Con esto se busca que la región sea un punto de atención en el campo internacional, al brindar profesionales capacitados y comprometidos en su campo de acción, permitiendo inversiones extranjeras en el sector, aumentando las oportunidades laborales y la calidad de vida de los profesionales en la región y en el país.

Las políticas institucionales establecen la necesidad de formar profesionales emprendedores e innovadores, con cultura investigativa y tecnológica, capaces de construir proyectos en beneficio de la región y de Colombia. La sublínea de investigación contribuye en el cumplimiento de estas políticas por medio de la generación de soluciones tecnológicas e innovadoras dirigidas a los diferentes sectores productivos de la región; en donde se aplican estrategias basadas en la construcción de software que den solución a las necesidades de las personas y organizaciones referentes al manejo y tratamiento de los datos.

3.1.2.10 Normatividad

Con el fin de regular, controlar y estandarizar el proceso y las etapas involucradas en el desarrollo de programas computacionales, múltiples organizaciones se han integrado en alianzas para fomentar buenas prácticas de ingeniería de software, para garantizar la producción de soluciones que satisfagan los requerimientos de los clientes, entre estas se encuentran las siguientes como revelan Toro y Cardona (2010):

IEEE (The Institute of Electrical and Electronics Engineers, inc.): Su misión es básicamente fomentar la prosperidad global para beneficio de la humanidad, a través del mejoramiento continuo de los
procesos de ingeniería, en la creación, desarrollo, integración, participación y aplicación del conocimiento de la informática, ciencia electromagnética y la electro tecnología. Esta entidad es un líder mundial en el desarrollo de normativas internacionales que soportan las telecomunicaciones, las TIC y la generación de energía - servicios y Colombia pertenece al IEEE Región 9 (Latino América), donde tiene diferentes tipos de membresía, clasificados básicamente en dos grupos: profesionales y miembros estudiantiles.

ISO (Organización Internacional de Normalización): es el desarrollador y editor de normas internacionales más grande del mundo, compuesta por una red de institutos de normalización en 163 países. Además, es una organización no gubernamental que integra el sector público y privado permitiendo llegar a un consenso sobre las soluciones que satisfagan tanto los requerimientos del negocio como las necesidades de la sociedad. Entre las diferentes temáticas abordadas por la ISO se encuentra la agricultura, la construcción, ingeniería mecánica, productos sanitarios y las TIC.

CMMI (Capability Maturity Model Integration) es el organismo encargado de dar el lineamiento a los modelos que contienen las mejores prácticas que ayudan a las organizaciones a mejorar sus procesos. Siendo un modelo refleja una abstracción de la realidad que permite a las organizaciones adoptar prácticas útiles para alcanzar sus objetivos de negocio, constituye una referencia no es un proceso en sí. Para establecer una analogía, querer adaptar la organización al modelo es como si al ver una maqueta de una casa una persona desea vivir en ella.

ACOFI (Asociación Colombiana de Facultades de Ingeniería) se encarga de propender al impulso y el mejoramiento de la calidad de las actividades de docencia, investigación, innovación, desarrollo tecnológico y extensión en ingeniería que desarrollan las facultades, escuelas y programas de ingeniería en Colombia, con proyección internacional. [14]

REDIS (Red de Programas de Ingeniería de Sistemas y Afines) es una agrupación de quienes actúan como autoridades máximas de los programas de ingeniería de sistemas, o nombres afines, ofrecidos por instituciones de educación superior. Fue creada en Bogotá en el año 2001 y desde entonces se reúne por lo menos una vez al mes a tratar asuntos comunes de carácter académico y profesional, que implican colaboración y relación con los representantes de distintos sectores y gremios: Acis, Acofi, Fedesoft, Ministerio de las TIC, Ministerio de Industria y Comercio, y Ministerio de Educación Nacional, entre otros. [15]

3.1.3 Epistemología

3.1.3.1 Referente teórico

El propósito de este apartado en este documento es hacer una contextualización desde definir conceptos fundamentales, algunos autores y sus perspectivas de la *ingeniería de software*, la evolución y las metodologías con mayor relevancia y tendencias de la disciplina.
¿Qué se entiende por Software?

“Conjunto de programas, instrucciones y reglas informáticas para ejecutar ciertas tareas en una computadora” [16].

“Es el conjunto de los programas de cómputo, procedimientos, reglas, documentación y datos asociados que forman parte de las operaciones de un sistema de computación” [17].

¿Qué se entiende por Ingeniería de Software?

A continuación se exponen algunas definiciones:

“Es el establecimiento y uso de principios robustos de ingeniería, orientados a obtener software que sea fiable y funcione de manera eficiente sobre máquinas reales” [18].

“Es la aplicación práctica del conocimiento científico en el diseño y construcción de programas de computadora y la documentación asociada requerida para desarrollar, operar y mantenerlos. Se conoce también como desarrollo de software o producción de software” [19].

“Es una disciplina que integra métodos, herramientas y procedimientos para el desarrollo de software de computadora” [20].

“Enfoque sistemático para el desarrollo, operación, mantenimiento y eliminación del software, definiendo como software los programas, procedimientos, reglas y documentación, así como los datos de operación de un sistema de cómputo” [17].

Compilando las definiciones de los autores, el término de ingeniería de software se puede definir como un conjunto de métodos, técnicas y herramientas que permiten la construcción de software de calidad el cual debe de cumplir con los requerimientos para lo cual diseñado.

¿Cuál ha sido su evolución?

Hace alrededor de cincuenta años, la humanidad se ha beneficiado de los diferentes desarrollos informáticos, dado que la ingeniería de software se considera que tuvo su origen histórico en la conferencia del comité científico de la OTAN el año 1968 [21]. Las primeras investigaciones al respecto buscaban hallar mejores mecanismos para escribir programas. Trabajos posteriores, como el análisis y diseño estructurado, comenzaron a presentar un visión más amplia del proceso.

Para la década de los setenta, se fortalece las redes de área local y global conocido como la Internet, al igual que los sistemas distribuidos, se logra la introducción de la programación estructurada y los métodos formales. En los años ochenta nace el paradigma orientado a objetos en diferentes lenguajes de programación y quedando en el pasado los desarrollos tradicionales cambiando la forma de construir software aumentando la productividad al definir equipos de desarrollo en la industria. En la década de los noventa y el nuevo siglo la concurrencia toma mayor importancia al momento de construir nuevos desarrollos; se implementa el lenguaje de modelado conocido como (UML) y se
genera el primer proceso de desarrollo orientado a RUP, esto dando cabida a un nuevo rol en la industria de los diseñadores y los arquitectos de software. El término usabilidad de los sistemas se convierte en el foco de atención e investigación, el software empieza a ocupar la posición crítica en el mercado competitivo y en la sociedad Web [22].

En la actualidad con la llegada de los dispositivos móviles electrónicos, la industria del software crece de manera exponencial dando cabida a desarrollos bajo el marco de agiles que dan valor al cliente final; en el ciclo de vida del software se generan nuevas cualidades de calidad como, seguridad, privacidad, confiabilidad, disponibilidad y el tiempo de respuesta. La disciplina se ha enriquecido con investigaciones y avances tecnológicos desde sus inicios hasta nuestros días.

La ingeniería de software, al igual que otras ingenierías, debe trabajar con elementos gerenciales y humanos, además de los elementos técnicos propios. Sin embargo, a diferencia de las otras ingenierías, su producto, el software, es inmaterial. El desarrollo de software no puede, por tanto, ser manejado y controlado como otros procesos para productos físicos. El desarrollo de software es una actividad compleja por naturaleza al considerarse algo intangible.

El software es el producto que construyan los programadores profesionales y que después le dan mantenimiento durante un largo tiempo. Incluye programas que se ejecutan en una computadora de cualquier tamaño y arquitectura, contenido que se presenta a medida que se ejecutan los programas de cómputo e información detallada tanto en una copia dura como en formatos virtuales que engloban virtualmente a cualesquier medio electrónico.

La sublínea de investigación en ingeniería de software abarca los diferentes elementos que deben ser tenidos en cuenta en el correcto desarrollo de programas informáticos, incluyendo metodologías y tecnologías de vanguardia enfocadas al sector productivo de este campo de estudio, como las métricas de calidad, trabajo en equipo, gestión de proyectos, análisis y modelamiento. Adicionalmente, comprende la investigación y desarrollo de tecnologías de alto impacto, tales como la computación en la nube, la aplicación de inteligencia de negocios y minería de datos para la toma de decisiones y descubrimiento de conocimiento.

Metodologías de desarrollo de software

Desde los inicios del desarrollo de software, se han definido diferentes metodologías que buscan encaminar el correcto proceso de implementación de un proyecto de software a través de su ciclo de vida. Inicialmente, las metodologías diseñadas no permitían ver resultados en poco tiempo, lo que llevaba a que los proyectos duraran más tiempo del que realmente podrían requerir, dando como resultado la definición de metodologías agiles que solventaban este tipo de problemas. Actualmente las metodologías de desarrollo de software más usadas son SCRUM y XP.
SCRUM se caracteriza por brindar un enfoque incremental, en lugar de la planificación y ejecución completa del producto. En este la calidad del resultado se basa principalmente en el conocimiento innato de las personas en equipos auto organizados, antes que, en la calidad de los procesos empleados, donde las iteraciones (En scrum se llaman Sprint) se repiten de forma continua hasta que el cliente da por cerrada la evolución del producto.

Respecto a la metodología XP, esta se enfoca en potenciar las relaciones interpersonales como clave para el éxito en desarrollo del software, promoviendo el trabajo en equipo, preocupándose por el aprendizaje de los desarrolladores y propiciando un buen clima de trabajo, basándose en la retroalimentación continua entre cliente y el equipo de desarrollo. Debido a la naturaleza de la metodología, se hace necesario la habilidad de responder a los cambios que puedan surgir a lo largo del proyecto determina también el éxito o fracaso del mismo, donde la planificación no debe ser estricta sino flexible y abierta.
3.1.3.2 Áreas de investigación correspondientes con la disciplina

Con base en los elementos planteados en el Programa de Ciencia, Tecnología e Innovación en Electrónica, Telecomunicaciones e Informática de Colciencias, la realidad del sector y las tendencias mundiales se definen las siguientes áreas de investigación:

- Análisis del software
- Desarrollo
- Calidad del Software
- Gestión de Proyectos
- Cloud Computing
- Análisis de Datos

3.1.3.3 Espacios disciplinarios que soportan y fortalecen las áreas de investigación

Tabla 10 Espacios académicos que soportan las áreas de investigación

<table>
<thead>
<tr>
<th>Área</th>
<th>Espacios académicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Análisis del software</td>
<td>Principios de Ingeniería de Software – Análisis de Requerimientos – Diseño de Interfaces Gráficas - Diseño de software – Diseño de Bases de Datos Ingeniería de software I - II – III y Arquitecturas de software.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Desarrollo</td>
<td>Lenguaje de Programación - Estructuras de Datos - Construcción APP Empresariales -</td>
</tr>
<tr>
<td></td>
<td>Construcción APP Móviles - Desarrollo en Equipo - Sistemas Distribuidos.</td>
</tr>
<tr>
<td>Calidad del Software</td>
<td>Principios de Ingeniería de Software - Análisis de Requerimientos -</td>
</tr>
<tr>
<td></td>
<td>Ingeniería de software I - II – III</td>
</tr>
<tr>
<td>Gestión de Proyectos</td>
<td>Ingeniería de software I - II – III – Gestión de Proyectos de TI -</td>
</tr>
<tr>
<td></td>
<td>Arquitecturas de software.</td>
</tr>
<tr>
<td>Cloud Computing</td>
<td>Laboratorio de Hardware y Software - Redes Datos - Arquitectura de software –</td>
</tr>
<tr>
<td></td>
<td>Sistemas Distribuidos – Gestión de Proyectos de TI</td>
</tr>
<tr>
<td>Análisis de Datos</td>
<td>Diseño de Bases de Datos – Administración de Bases de Datos – en las electivas I, II</td>
</tr>
</tbody>
</table>
Gráfico 7. Relación del Programa académico de Ingeniería de Software con el Programa de investigación de la Facultad de Ingeniería
BIBLIOGRAFÍA

3.2 Sublínea del Programa académico de Ingeniería Industrial

Tabla 11. Denominaciones de acuerdo al nivel de formación

<table>
<thead>
<tr>
<th>Nivel / Denominación</th>
<th>Semestres</th>
<th>SNIES</th>
<th>Créditos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecnología en gestión de procesos industriales</td>
<td>6</td>
<td>101620</td>
<td>97</td>
</tr>
<tr>
<td>Ingeniería Industrial</td>
<td>9</td>
<td>101621</td>
<td>156</td>
</tr>
</tbody>
</table>

a. **Código CINE:**

Tabla 12. Código CINE

<table>
<thead>
<tr>
<th>Campo amplio</th>
<th>Campo específico</th>
<th>Campo detallado</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 Ingeniería, industria y</td>
<td>071 Ingeniería y profesiones</td>
<td>Ingeniería y procesos químicos</td>
</tr>
<tr>
<td>construcción</td>
<td>afines</td>
<td></td>
</tr>
</tbody>
</table>

b. **Objeto de estudio:** Concepción, diseño, planeación, implementación y operación de sistemas de producción de bienes y servicios, integrando recursos humanos, financieros, y tecnológicos, para mejorar la competitividad, productividad y eficiencia de las organizaciones.

c. **Objetivo de formación:** El programa Ingeniería Industrial, tiene como propósito fundamental la formación de profesionales con competencias para diseñar, planear, administrar, controlar y evaluar sistema de producción de bienes y servicios; a partir de métodos y técnicas orientadas a la optimización de la productividad; integrando personas, recursos financieros, tecnológicos y materiales, en pro del mejoramiento continuo de las organizaciones.

d. **Roles del egresado:**

- Director del Departamento de planeación y métodos.
- Gerente de Producción y de operaciones.
- Administrador de sistemas de abastecimiento y logística (SCM).
- Analista de productividad.
- Jefe de Personal y Recursos Humanos.
- Coordinador de calidad.
- En su propia empresa de consultoría y/o asesoría en asuntos específicos de la Ingeniería Industrial.
3.2.1 Denominación de sublínea: Análisis y Optimización Sistemas Productivos de Bienes y Servicios

3.2.1.1 Administrador de sublínea: Consejo curricular del Programa y el Equipo académico de investigación IDAOS

3.2.2 Problema de investigación

Ausencia de buenas prácticas para el diseño y optimización de sistemas productivos de bienes y servicios en las organizaciones.

3.2.2.1 Objetivo de investigación

Ofrecer soluciones para la productividad y eficiencia de procesos productivos de bienes y servicios en las organizaciones, mediante la integración de recursos humanos, económicos, financieros y tecnológicos.

3.2.2.2 ¿Qué problema soluciona, y cuáles son las aplicaciones?

<table>
<thead>
<tr>
<th>Problemas</th>
<th>Aplicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Carencia de métodos eficientes de producción que potencien la productividad de las empresas del sector industrial.</td>
<td>Al identificar las tendencias y las necesidades del entorno industrial se espera que la investigación en ingeniería industrial desarrolle competencias y habilidades para desempeñarse en los sectores industriales, agroindustriales y empresas de servicio en los siguientes aspectos:</td>
</tr>
<tr>
<td>• Ineficiencias en la gestión y planeación de las actividades de los departamentos que pertenecen a la cadena de suministro (compras, producción, transporte, almacenamiento y distribución).</td>
<td>• Diseño, Configuración y Administración de Sistemas de Producción.</td>
</tr>
<tr>
<td>• Necesidad de planear y optimizar los recursos disponibles en las empresas, con el fin de reducir costos y aumentar utilidades.</td>
<td>• Planeación programación y control de la producción.</td>
</tr>
<tr>
<td>• Carencia de métodos de toma de decisión científicos y estadísticos.</td>
<td>• Análisis y control de la Calidad.</td>
</tr>
</tbody>
</table>

3.2.2.3 ¿Contribución a la solución de problemas nacionales?

La ingeniería industrial y entre los trabajos de la disciplina se denota una tendencia investigativa que incluye: la productividad y competitividad, logística, modelación matemática aplicada a la solución de problemas organizacionales y producción.
Según ACOFI, la formación en ingeniería industrial en el país, se encuentra orientada no solamente al desempeño de los egresados en la industria manufacturera, sino también y cada vez con mayor fuerza al desempeño en el sector de servicios y en otros sectores diversos. Los conceptos de la formación son perfectamente aplicables y transferibles a estos sectores de la economía.

Continuando con ACOFI-ICFES, se encuentra que entre las tendencias que se identifican actualmente y que determinan la formación en ingeniería industrial y el posterior desempeño de los egresados se encuentran, entre las más importantes, las siguientes:

- La globalización ha determinado que las organizaciones empresariales se identifiquen por su pertenencia a una cadena productiva y no por su desempeño individual.
- El anterior enfoque que se centra en mejorar la posición competitiva de las empresas a partir de la innovación por medio de la tecnología de producto, ha sido reemplazado por un enfoque hacia la mejora de la productividad y con ella adquiere especial importancia la tecnología de procesos (hacer más eficientes los métodos, reducir costos, estandarizar productos, mejorar la calidad de los productos y de los servicios posventa, etc.).
- En las organizaciones se promueve el trabajo en equipo, las estructuras horizontales donde la comunicación fluye más fácilmente y donde se fomenta la participación de todos los miembros. Todas las personas tienen responsabilidades, la facultad para tomar decisiones y disponer de recursos.
- Formación para el liderazgo, el emprendimiento y la creación de empresas.

3.2.2.4 Relación de la sublínea con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD)

De acuerdo con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD) [1], se evidencia que la sublínea de investigación del Programa de Ingeniería Industrial se enmarca entre los siguientes objetivos:

Objetivo 8. Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos: De acuerdo con la sublínea de investigación de análisis y optimización de sistemas productivos de B&S, se busca estimular el crecimiento económico sostenible mediante el aumento de los niveles de productividad y la innovación tecnológica en las empresas, así mismo, aportar al espíritu empresarial y la creación de empleo [2].

Objetivo 9. Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación: La inversión sostenible en infraestructura y la innovación son motores fundamentales del crecimiento y el desarrollo económico. Con más de la mitad de la población mundial viviendo en ciudades, el transporte masivo y la energía renovable son cada
vez más importantes, así como también el crecimiento de nuevas industrias y de las tecnologías de la información y la comunicación, es aquí donde la sublínea de investigación del Programa de Ingeniería Industrial aporta con la generación de nuevos avances tecnológicos, con el fin de encontrar soluciones permanentes a los desafíos económicos y ambientales [2].

Objetivo 12. Garantizar modalidades de consumo y protección sostenibles: Con la sublínea en análisis y optimización de sistemas productivos de B&S se pretende aportar al crecimiento económico y desarrollo sostenible, reduciendo la huella ecológica mediante un cambio en los métodos de producción y consumo de bienes y recursos, donde, la agricultura es el principal consumidor de agua en el mundo y el riego hoy representa casi el 70% de toda el agua dulce disponible para el consumo humano, ya que, la gestión eficiente de los recursos naturales compartidos y la forma en que se eliminan los desechos tóxicos y los contaminantes son vitales para lograr este objetivo [2].

El consumo de una gran proporción de la población mundial sigue siendo insuficiente para satisfacer incluso sus necesidades básicas. En este contexto, es importante reducir a la mitad el desperdicio per cápita de alimentos en el mundo a nivel de comercio minorista y consumidores para crear cadenas de producción y suministro más eficientes. Esto puede aportar a la seguridad alimentaria y llevarnos hacia una economía que utilice los recursos de manera más eficiente [2].

3.2.2.5 Relación del problema con la Política nacional de desarrollo productivo CONPES 3866 de agosto 08 de 2016

La problemática presente en la sublínea de investigación estudia la baja productividad que tienen las empresas del departamento del Quindío, en relación con los productos y servicios ofrecidos, ya que estos no han podido alcanzar su potencial de crecimiento en términos de producción y venta.

Por otro lado, en [3] se discuten las ineficiencias que se han generado y la ausencia de foco en la definición de programas cuyo propósito sean el aumento de la productividad, por lo cual, el CONPES contiene una Política de Desarrollo Productivo (PDP) para el país, donde dicha política se define como un conjunto de instrumentos sectoriales y transversales para resolver fallas de mercado, de gobierno y de articulación que inhiben el crecimiento de la productividad o que dificultan los procesos de sofisticación del aparato productivo colombiano.

Por lo tanto, es de importancia revisar el contenido de la PDP, la cual presenta los instrumentos que apuntan a solucionar fallas de mercado, de gobierno o de articulación, que dan lugar a barreras que impiden que las empresas puedan aumentar su productividad, donde se indica la necesidad de que los criterios de priorización usados apunten a identificar y atender productos que no han podido alcanzar su potencial de crecimiento (en términos de producción, ventas o exportaciones) debido a la presencia de tales fallas [3].

Así mismo, en [3] se presentan siete principios rectores de la política de desarrollo productivo, donde con estos estos principios se busca crear mecanismos claros y transparentes en la
selección de estrategias e instrumentos tanto en el corto como en el largo plazo, así como garantizar que estos efectivamente respondan a los objetivos generales de la política, donde de estos siete principios se evidencia relación con el segundo principio presentado, el cual establece:

“En la PDP es fundamental la coordinación Gobierno-empresa-academia, nación-región y al interior del sector público. En este sentido, la PDP está articulada con otras políticas. Además, la PDP propicia espacios permanentes de diálogo con el sector privado para su seguimiento y para la identificación conjunta de problemas complejos y cambiantes y sus posibles soluciones [3]”

De acuerdo con lo anterior y con el objetivo general del CONPES 3866 de agosto 08 de 2016 “Desarrollar instrumentos que apunten a resolver fallas de mercado, de gobierno o de articulación a nivel de la unidad productora, de los factores de producción o del entorno competitivo, para aumentar la productividad y la diversificación del aparato productivo colombiano hacia bienes y servicios más sofisticados [3]” se puede evidenciar que la sublínea de investigación del programa de Ingeniería Industrial permite realizar aportes al sector productivo mejorando y optimizando los procesos u operaciones empresariales, ya que de acuerdo con (Blyde, 2014) se tienen bajos niveles actuales de encadenamientos productivos en la economía colombiana, lo cual es producto de fallas de coordinación entre los diferentes agentes económicos (sectores primarios, proveedores, transformadores, comercializadores) que participan en la cadena, donde la baja coordinación limita las posibilidades de generación de economías de escala, creación de oportunidades de negocio con nuevos compradores, transmisión de avances tecnológicos entre actores de la cadena, la diversificación de la producción, el incremento en productividad y la integración de la producción nacional en cadenas regionales o globales de valor.

3.2.2.6 Relación de la sublínea con los sectores del Plan de Acuerdo estratégico departamental de ciencia, tecnología e innovación del Quindío (PAED)

En [4] se presenta la visión estratégica departamental:

“En el 2025, el departamento del Quindío será un departamento sustentable con un modelo de desarrollo sostenible, productivo, competitivo e innovador y para ello integrar actores de CTel reconocidos y empresas competitivas en el mercado global, fomentando el talento humano, el desarrollo y uso de la tecnología, la generación de conocimiento y la aplicación de la innovación”

Así mismo en los objetivos, se presenta la apuesta país 2, la cual hace referencia a empresas más sofisticadas e innovadoras, donde el primer objetivo busca:

Desarrollar actividades de generación, adaptación, transferencia de conocimiento y tecnología e investigación aplicada destinada a generar mejoras en productividad y competitividad de las actividades económicas del departamento del Quindío.
Teniendo en cuenta el objetivo mencionado anteriormente y los focos temáticos estratégicos que se priorizaron para el departamento en CTel, la sublínea de investigación se enmarca y puede aportar en los siguientes focos:

- Foco 1: Agricultura y desarrollo rural.
- Foco 2: Ambiente y desarrollo sostenible.
- Foco 3: Comercio, industria y turismo.

Así mismo, entre las 10 líneas programáticas que se priorizaron se evidencia relación de la sublínea con:

- El aumento de la producción científica básica, aplicada y experimental en los focos priorizados que se enmarcan.
- La creación de centros de innovación que mejoren la productividad empresarial y la competitividad del departamento con enfoque sostenible en los focos priorizados que se enmarcan.
- Fortalecimiento de los procesos de innovación empresarial en productos, procesos y formas de organización.

3.2.2.7 Relación de la sublínea con los sectores priorizados del Plan regional de competitividad del Quindío 2032

Visión Quindío 2.032:

En el 2.032 el Quindío será un Departamento ambientalmente sostenible y sustentable, equitativo, justo e incluyente socialmente, modelo de integración regional y asociatividad, con un nivel de ingreso medio alto per cápita; y en los cinco primeros lugares de competitividad nacional, basado en el aumento de la diversificación de la productividad agro exportadora, un turismo y otros servicios con alto valor agregado; mediante el desarrollo de competencias educativas, formación laboral, investigación y alta tecnología, y en conectividad con el mundo globalizado [5].

Para el cumplimiento de la visión del Quindío al 2032 se tienen en cuenta varios aspectos fundamentales, entre los cuales se incluye el desarrollo y promoción de los servicios con que cuenta el departamento y que pueden llegar a ser altamente competitivos a nivel mundial, donde están el sector salud, software, turismo y servicios logísticos internacionales, así mismo otro aspecto fundamental es el desarrollo de competencias, formación laboral, investigación y alta tecnología, en conectividad con el mundo globalizado, donde este aspecto busca el impulso a los sectores productivos del Departamento mediante el desarrollo de las diversas competencias en el capital humano, técnico y tecnológico que permita incrementar los niveles de productividad y mejorar las condiciones de calidad en sus productos bienes y servicios destinados a los mercados nacionales o mundiales [5].
De acuerdo con lo anterior, y en relación con el objetivo de la sublínea de investigación del programa de Ingeniería Industrial que busca “ofrecer soluciones para el mejoramiento continuo de procesos productivos de bienes y servicios en las organizaciones, mediante la integración de recursos humanos, económicos, financieros y tecnológicos”, se evidencia la pertinencia de la sublínea de investigación con el plan de competitividad del Quindío 2032, donde los sectores en los que puede aportar la sublínea con el mejoramiento de los procesos productivos de bienes y servicios de las organizaciones del Quindío son:

- Sector de servicios.
- Salud (optimizando los procesos de prestación de servicios).
- Transporte logístico.
- Agroindustria aportando a una producción limpia y sostenible (producción de café).

Entre los 17 proyectos priorizados por la comisión regional de competitividad se encuentra relación con alguno de estos:

- Café sostenible: en la inclusión de procesos de producción limpia.
- Construcción de una planta de residuos sólidos urbanos.
- Fabricación y construcción de paneles solares: en el diseño de las instalaciones de producción.
- Centro de desarrollo empresarial.
- Programa empresarial de innovación para el fortalecimiento de la productiva de la cadena de guadua.

3.2.2.8 Grupos, redes e instituciones que trabajen a nivel nacional e internacional relacionadas con el problema de la Sublínea de investigación

Tabla 14. Grupos, redes e instituciones relacionadas con el problema de la sublínea de investigación

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Temas de estudio y/o áreas de interés y/o actividad principal de la empresa</th>
<th>Contacto</th>
<th>Ciudad/país</th>
<th>Sitio web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instituto de Ingenieros Industriales y de Sistemas (IISE)</td>
<td>Es una organización profesional dedicada exclusivamente al apoyo de la ingeniería industrial y de las personas que participan en la mejora de la calidad y la productividad.</td>
<td>bboyd@iise.org</td>
<td>Norcoss (Georifia) / Estados Unidos</td>
<td>http://www.iise.org/Home/</td>
</tr>
<tr>
<td>Association of European Operational Research Societies (EURO)</td>
<td>Aplicaciones de la Investigación de operaciones.</td>
<td>office@euro-online.org, manager@euro-online.org</td>
<td>Leeds/Inglaterra, Fribourg/Suiza</td>
<td>https://www.euro-online.org/web/pages/1/home</td>
</tr>
<tr>
<td>Escuela Latinoamérica</td>
<td>El propósito de ELAVIO es estimular nuevas</td>
<td></td>
<td>Chile/Latinoamérica</td>
<td>http://www.elavio.cl/9/es/inici</td>
</tr>
<tr>
<td>Asociación</td>
<td>Descripción</td>
<td>Contacto</td>
<td>Dirección</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Asociacion Colombiana de Investigación de operaciones (ASOCIO)</td>
<td>Busca desarrollar, mejorar, aplicar, difundir y promocionar los métodos y aplicaciones de la Investigación de Operaciones, en cualquiera de sus ramas, así como cualquier otra iniciativa que tienda al máximo aprovechamiento de esta área de conocimiento en beneficio de la sociedad.</td>
<td>asociocolombia@gmail.com</td>
<td>Comunidad colombiana</td>
<td>http://asociocolombia.wixsite.com/asocio</td>
</tr>
</tbody>
</table>
| Grupos de investigación en Modelamiento y gestión de operaciones (MGO) | • Estadística industrial
• Diseño de experimentos y control estadístico de calidad
• Finanzas y Proyectos
• Gestión Ambiental
• Gestión empresarial y competitividad
• Optimización Cadena de Suministro y Logística
• Planeación, Programación y Control de la producción
• Productividad y Ergonomía | Línea gratuita nacional 01-8000-180556 | Colombia/Pontificia Universidad Javeriana Cali | https://www.javerianacali.edu.co/grupos-de-investigacion/modelamiento-y-gestion-de-operaciones-mgo |
| Modelamiento o para la gestión de operaciones (GIMGO) | • Gestión de la cadena de suministro
• Estadística industrial
• Gerencia del servicio
• Planeación y programación de producción | Dirección: Cr 80 No. 65-223 Bloque M8B-208
Teléfono: 4255210
E-mail: alcorrea@unal.edu | Colombia/Universidad nacional de Medellín | http://www.hermes.unal.edu.co/pages/Consulta/Grupo.jsf?idGrupo=1552 |
| na de verano de investigación de operaciones (ELAVIO) | colaboraciones y fomentar la participación de jóvenes en Investigación de Operaciones poniéndolos al día sobre temas de investigación por medio de pequeños cursos y conferencias plenarias. | IFORS Secretary: secretary@ifors.org
IFORS Webmaster: webmaster@ifors.org | 5521 Research Park Drive, Suite 200, Catonsville, MD 21228 USA | http://ifors.org/ |
3.2.2.9 Contexto institucional

La sublínea de investigación busca aportar al deber ser de la institución trabajando en la formación de profesionales, con cultura tecnológica y científica en las disciplinas que comprende la ingeniería industrial, específicamente en el desarrollo de competencias que permitan mejorar los procesos de toma de decisiones en función de la productividad y eficiencia de las organizaciones de la región, el país y la comunidad internacional. Con esto se busca que la región sea un punto de atención en el campo internacional, al brindar profesionales capacitados y comprometidos en su campo de acción, permitiendo inversiones extranjeras en el sector, aumentando las oportunidades laborales y la calidad de vida de los profesionales.

Las políticas institucionales establecen la necesidad de formar profesionales emprendedores e innovadores, con cultura investigativa y tecnológica, capaces de construir proyectos en beneficio de la región y de Colombia. La sublínea de investigación contribuye en el cumplimiento de estas políticas al ofrecer soluciones para la productividad y eficiencia de procesos productivos de bienes y servicios, mediante la integración de recursos humanos, económicos, financieros y tecnológicos.

3.2.2.10 Normatividad

IEEE (The Institute of Electrical and Electronics Engineers, inc.): Su misión es básicamente fomentar la prosperidad global para beneficio de la humanidad, a través del mejoramiento continuo de los procesos de ingeniería, en la creación, desarrollo, integración, participación y aplicación del conocimiento de la informática, ciencia electromagnética y la electro tecnología. Esta entidad es un líder mundial en el desarrollo de normativas internacionales que soportan las telecomunicaciones, las TIC y la generación de energía - servicios y Colombia pertenece al IEEE Región 9 (Latino América),
donde tiene diferentes tipos de membresía, clasificados básicamente en dos grupos: profesionales y miembros estudiantiles.

ISO (Organización Internacional de Normalización): es el desarrollador y editor de normas internacionales más grande del mundo, compuesta por una red de institutos de normalización en 163 países. Además, es una organización no gubernamental que integra el sector público y privado permitiendo llegar a un consenso sobre las soluciones que satisfagan tanto los requerimientos del negocio como las necesidades de la sociedad. Entre las diferentes temáticas abordadas por la ISO se encuentra la agricultura, la construcción, ingeniería mecánica, productos sanitarios y las TIC.

ACOFI (Asociación Colombiana de Facultades de Ingeniería): se encarga de propender al impulso y el mejoramiento de la calidad de las actividades de docencia, investigación, innovación, desarrollo tecnológico y extensión en ingeniería que desarrollan las facultades, escuelas y programas de ingeniería en Colombia, con proyección internacional.

ASME (Sociedad Americana de Ingenieros Mecánicos): Asociación de profesionales, que ha generado un código de diseño, construcción, inspección y pruebas para equipos, entre otros, calderas y recipientes sujetos a presión.

3.2.3 Epistemología

3.2.3.1 Referente teórico

En el trabajo realizado en [6], se explica que la ingeniería industrial trata de eliminar la pérdida de tiempo, dinero, materiales, energía, equipo y otros recursos, por lo tanto la investigación debe estar enfocada a las ciencias de la gestión, el estudio de operaciones, e incluso el diseño experimental. Así mismo, [7] presentan una caracterización sobre la formación en el programa académico de pregrado de Ingeniería Industrial en Colombia, donde exhiben que la investigación en la ingeniería industrial tiende a ser de naturaleza multidisciplinaria e interdisciplinaria, dificultándose en ocasiones encontrar un objeto de estudio propio y unívoco en la investigación asociada a la profesión, tenido en cuenta lo anterior, se enmarcan algunos de los temas objeto de trabajo investigativo en ingeniería industrial y que denotan una tendencia en la formación investigativa en la profesión donde se incluyen: productividad y competitividad, logística, modelación matemática aplicada a la solución de problemas organizacionales y de producción.

De acuerdo con [8] [9], manifiestan que además de investigar en técnicas y métodos de investigación operativa, se debe tener en cuenta la mejora de la calidad, la seguridad, la eficiencia, la eficacia y el desempeño de los procesos, así mismo [10] se deben estudiar y evaluar los métodos de producción y señalar maneras de mejorarlo. Por otro lado, [11] indican que en las últimas décadas la ingeniería industrial ha incorporado los métodos científicos de la investigación de operaciones para analizar problemas de la producción y del servicio, donde estos métodos analíticos, las avanzadas tecnologías de simulación, el modelado de sistemas complejos de producción y servicio apoyan en gran medida las tareas de un Ingeniero Industrial, por lo que deben ser incluidos en los temas de investigación de la Ingeniería Industrial e incluir enfoques multidisciplinarios cooperativos en temas relacionados con el análisis de costos, planificación de
producción, diseño de sistemas de control para coordinar actividades y garantizar la calidad de los productos.

En [12] se presenta un análisis de los temas de conferencias, ideas de expertos en el campo y una encuesta de las palabras claves en las publicaciones referentes a la ingeniería industrial, a partir de las cuales se determinó que la investigación en el área comprende una gran variedad de temas gerenciales y técnicos.

Tabla 15. Temas de investigación de la ingeniería industrial

<table>
<thead>
<tr>
<th>Tema principal</th>
<th>Asuntos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestión de la producción</td>
<td>Producción Lean, Producción Ágil, Mantenimiento, Confiabilidad, Mantenimiento Productivo Total, Sistema Kanban, Planeación de producción.</td>
</tr>
<tr>
<td>Sistemas de información y tecnología</td>
<td>Tecnología de la Información, Gestión del Conocimiento, Sistemas de Información, MIS</td>
</tr>
<tr>
<td>La investigación de operaciones</td>
<td>Programación Matemática, AHP, MCDM, Simulación, Algoritmo Genético, Búsqueda Tabú, Recocido Simulado, Algoritmos Heurísticos, Sistemas de Apoyo a la Decisión, Teoría del Caos, teoría de restricciones.</td>
</tr>
<tr>
<td>Gestión de proyectos</td>
<td>Gestión de Proyectos, Control de Proyectos, Ingeniería de valor y gestión.</td>
</tr>
<tr>
<td>Gestión de la cadena de suministro</td>
<td>SCM, ERP, MRP, EOQ, MRP II</td>
</tr>
<tr>
<td>Gestión de calidad total</td>
<td>TQM, 6 Sigma & Lean 6 Sigma, Control de Calidad, BSC, DEA, Métodos de Taguchi, DOE, FMEA, CRM, Benchmarking, Kaizen.</td>
</tr>
<tr>
<td>Sistemas avanzados de producción y tecnología</td>
<td>Celdas de manufactura, FMS, CIM, FT, Ingeniería Inversa</td>
</tr>
<tr>
<td>Sistemas Inteligentes y Métodos</td>
<td>Redes Neuronales, Inteligencia Artificial, Lógica Difusa, Minería de datos- Sistemas Expertos.</td>
</tr>
<tr>
<td>Ingeniería de métodos</td>
<td>Ergonomía y factores humanos, estudios de trabajo, estudio del tiempo, Productividad, Facility Layout, BPR, balanceo de línea.</td>
</tr>
<tr>
<td>Otros asuntos</td>
<td>TRIZ, Innovación y Creatividad, Solución de Problemas, Gestión de la tecnología.</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia basado en [9]

Por otro lado [13], presenta un documento con el cuerpo de conocimiento de la ingeniería industrial (IEBok), donde se encuentran 12 áreas de conocimiento: diseño y medición de trabajos, investigación y análisis de operaciones, ingeniería y análisis económico, ingeniería de instalaciones y gestión de energía, ingeniería de calidad y confiabilidad, ergonomía y factores humanos, ingeniería y gestión de operaciones, gestión de la cadena de suministro, ingeniería de gestión, seguridad, ingeniería de información, así como temas relacionados con el diseño y desarrollo de productos, diseño e ingeniería de sistemas.

3.2.3.2 Áreas de investigación correspondientes con la disciplina

- Diseño y Gestión de operaciones
- Métodos cuantitativos y estadística
• Gestión empresarial

3.2.3.3 Espacios disciplinares que soportan y fortalecen las áreas de investigación

Tabla 16. Espacios académicos que soportan las áreas de investigación

<table>
<thead>
<tr>
<th>Área</th>
<th>Espacios académicos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño y Gestión de Operaciones</td>
<td>Procesos Industriales I – II, Tiempos y Movimientos, Sistemas y análisis de costos de producción, Control estadístico de la calidad, Producción I – II, Gestión de la Calidad, Gestión del mantenimiento industrial, Logística Integral, Localización y distribución de planta, Comercio Exterior.</td>
</tr>
</tbody>
</table>
Gráfico 8. Relación del Programa académico de Ingeniería Industrial con el Programa de investigación de la Facultad
BIBLIOGRAFÍA

3.3 Sublínea programa académico de Ingeniería Mecatrónica

Tabla 17. Denominaciones de acuerdo al nivel de formación

<table>
<thead>
<tr>
<th>Nivel / Denominación</th>
<th>Semestres</th>
<th>SNIES</th>
<th>Créditos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Técnico profesional en mantenimiento de sistemas mecatrónicos</td>
<td>4</td>
<td>104836</td>
<td>73</td>
</tr>
<tr>
<td>Tecnología en automatización industrial</td>
<td>6</td>
<td>52412</td>
<td>111</td>
</tr>
<tr>
<td>Ingeniería Mecatrónica</td>
<td>9</td>
<td>52409</td>
<td>162</td>
</tr>
</tbody>
</table>

a. Código CINE:

Tabla 18. Código CINE

<table>
<thead>
<tr>
<th>Campo amplio</th>
<th>Campo específico</th>
<th>Campo detallado</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 Ingeniería, industria y construcción</td>
<td>071 Ingeniería y profesiones afines</td>
<td>0711 Ingeniería y procesos químicos</td>
</tr>
</tbody>
</table>

b. Objeto de estudio: Concepción y desarrollo de sistemas mecatrónicos a partir de metodologías de diseño concurrente; entendidos estos, como un conjunto de elementos, dispositivos, máquinas, equipos y procesos en los que se integran componentes mecánicos, electrónicos e informáticos para facilitar las actividades de las personas y las organizaciones.

c. Objetivo de formación: El programa Ingeniería Mecatrónica, propende por la formación de profesionales con competencias para concebir, diseñar, integrar e implementar sistemas mecatrónicos, a partir de la integración de la mecánica, electrónica e informática, para la automatización de las organizaciones.

d. Roles del egresado: Director y/o Diseñador de proyectos de automatización, Integrador en soluciones de automatización, Director de proyectos de gestión tecnológica, Jefe del departamento de mantenimiento mecatrónico, mecánico y electrónico. En su propia empresa de consultoría y/o asesoría en asuntos específicos de la Ingeniería Mecatrónica.

3.3.1 Denominación de sublínea: Automatización y Diseño Mecatrónico

3.3.1.1 Administrador de sublínea: Consejo curricular del Programa y el Equipo académico de investigación SCAP

3.3.2 Problema de investigación

Bajos niveles de integración de tecnologías para la solución de necesidades de personas y organizaciones, referentes a la automatización y control de procesos productivos de bienes y servicios.
3.3.2.1 Objetivo de investigación

Diseñar e implementar soluciones tecnológicas para las organizaciones y las personas mediante la integración de la electrónica, la mecánica y la informática.

3.3.2.2 ¿Qué problema soluciona, y cuáles son las aplicaciones?

Tabla 19. Problemas y aplicaciones

<table>
<thead>
<tr>
<th>Problemas</th>
<th>Aplicaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Deficiente implementación de sistemas y algoritmos de control automatizados en los procesos productivos.</td>
<td>• Automatización de procesos productivos implementando sistemas y algoritmos de control que garanticen la calidad del producto terminado.</td>
</tr>
<tr>
<td>• Bajos niveles de automatización de procesos mecánicos, electrónicos, agroindustriales, entre otros.</td>
<td>• Diseño de sistemas mecatrónicos aplicables a diversos sectores productivos y al mejoramiento de la calidad de vida de las personas.</td>
</tr>
<tr>
<td>• Inapropiado diseño de sistemas mecatrónicos aplicados en los sectores productivo y agroindustrial de la región.</td>
<td>• Suplir las necesidades técnicas identificadas en los diferentes sectores productivos de la región.</td>
</tr>
<tr>
<td>• Limitación para identificar y satisfacer las necesidades técnicas en los procesos de actualización, diagnóstico y mantenimiento de equipos utilizados en los diferentes sectores productivos del departamento.</td>
<td>• Desarrollar proyectos que contribuyan al desarrollo de los sectores agroindustriales, manufactureros, energía eléctrica, bienes y servicios conexos, software & TI, entre otros.</td>
</tr>
<tr>
<td>• Bajo nivel de cualificación de talento humano para acometer procesos de automatización y control.</td>
<td>• Cualificar el talento humano en lo referente a los procesos de automatización y control.</td>
</tr>
<tr>
<td>• Ausencia de sistemas mecatrónicos que mejoren la calidad de vida de las personas en condición de discapacidad.</td>
<td></td>
</tr>
</tbody>
</table>

3.3.2.3 ¿Contribución a la solución de problemas nacionales?

En países industrializados se tiene mayor variedad de tecnologías, sin embargo, en el caso de Latinoamérica se carece de calidad y cantidad de herramientas tecnológicas. Por esta razón, es necesario que en Colombia y en el Quindío, se dé el siguiente paso en cuanto a la generación y apropiación del conocimiento, incrementando de esta manera la productividad y competitividad de las empresas locales mediante la innovación tecnológica. En este contexto, desde la sublínea de investigación en Automatización y Diseño Mecatrónico, se pretende contribuir al desarrollo productivo de la región a partir de la generación y desarrollo de equipos o maquinaria que permita mejorar tanto la calidad de vida de las personas, así como los niveles de producción de las diferentes cadenas productivas y de servicio de las organizaciones.
3.3.2.4 Relación de la sublínea con los objetivos mundiales del Programa de las Naciones Unidas para el Desarrollo (PNUD)

Se ha identificado que desde la sublínea de Automatización y Diseño Mecatrónico que toman relevancia los siguientes objetivos mundiales del programa de naciones unidas, los cuales son:

Objetivo 2: Poner fin al hambre, lograr la seguridad alimentaria y la mejora de la nutrición y promover la agricultura sostenible: Debido al rápido crecimiento económico y al aumento de la productividad agrícola en las últimas dos décadas, la proporción de personas desnutridas disminuyó casi a la mitad. Muchos países en desarrollo que sufrían hambrunas están ahora en condiciones de satisfacer las necesidades nutricionales de los más vulnerables. Regiones como Asia Central y Oriental y América Latina y el Caribe han avanzado muchísimo en la erradicación del hambre extrema.

Lo anterior son logros significativos para del cumplimiento de las metas establecidas por los Objetivos de Desarrollo del Milenio. Desgraciadamente, el hambre extrema y la desnutrición siguen siendo obstáculos enormes para el desarrollo de muchos países. Se estima que 795 millones de personas sufrían de desnutrición crónica en 2014, a menudo como consecuencia directa de la degradación ambiental, la sequía y la pérdida de biodiversidad. Más de 90 millones de niños menores de cinco años tienen un peso peligrosamente bajo y una de cada cuatro personas pasa hambre en África.

Objetivo 6: Garantizar la disponibilidad de agua y su gestión sostenible y el saneamiento para todos: La escasez de agua afecta a más del 40% de la población del mundial, una cifra alarmante que probablemente crecerá con el aumento de las temperaturas globales producto del cambio climático. Aunque 2.100 millones de personas han conseguido acceso a mejores condiciones de agua y saneamiento desde 1990, la decreciente disponibilidad de agua potable de calidad es un problema importante que aqueja a todos los continentes.

En 2011, 41 países experimentaban estrés hídrico; 10 de ellos estaban a punto de agotar su suministro de agua dulce renovable y ahora dependen de fuentes no convencionales. El aumento de las sequías y la desertificación ya está exacerbando estas tendencias. Se estima que al menos una de cada cuatro personas se verá afectada por escasez recurrente de agua para 2050.

Con el fin de garantizar el acceso universal al agua potable segura y asequible para todos en 2030, es necesario realizar inversiones adecuadas en infraestructura, proporcionar instalaciones sanitarias y fomentar prácticas de higiene en todos los niveles.

Si queremos mitigar la escasez de agua, es fundamental proteger y recuperar los ecosistemas relacionados con este recurso, como bosques, montañas, humedales y ríos. También se requiere más cooperación internacional para estimular la eficiencia hídrica y apoyar tecnologías de tratamiento en los países en desarrollo.

Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna para todos: Entre 1990 y 2010, la cantidad de personas con acceso a energía eléctrica aumentó en 1.700 millones. Sin embargo, a la par con el crecimiento de la población mundial, también lo hará la demanda de energía accesible. La economía global dependiente de los combustibles fósiles y el aumento de las emisiones de
gases de efecto invernadero están generando cambios drásticos en nuestro sistema climático, cuyas consecuencias tienen impactos evidentes en todos los continentes.

Sin embargo, una nueva tendencia ha impulsado el uso de fuentes alternativas de energía. En 2011, la energía renovable representaba más del 20% de la electricidad generada a nivel global, pero aun así, una de cada cinco personas no tiene acceso a esta. Debido que la demanda sigue en aumento, debe registrarse un incremento considerable en la producción de energía renovable en todo el mundo.

Para garantizar acceso universal a electricidad asequible en 2030, es necesario invertir en fuentes de energía limpia, como la solar, eólica y termal. La adopción de estándares eficaces en función del costo en una variedad de tecnologías también podría reducir en 14% el consumo mundial de electricidad en los edificios. Esto equivale a la energía generada por unas 1.300 centrales medianas cuya construcción se podría evitar.

Expandir la infraestructura y mejorar la tecnología para contar con fuentes de energía limpia en todos los países en desarrollo es un objetivo crucial que puede estimular el crecimiento y a la vez ayudar al medio ambiente.

Objetivo 8: Promover el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo y el trabajo decente para todos: Durante los últimos 25 años, la cantidad de trabajadores que viven en condiciones de pobreza extrema ha disminuido drásticamente, pese al persistente impacto de la crisis económica de 2008 y 2009. En los países en desarrollo, la clase media representa hoy más del 34% del empleo total, una cifra que casi se triplicó entre 1991 y 2015.

Sin embargo, mientras la economía mundial continúa recuperándose presenciamos un crecimiento más lento, el aumento de las desigualdades y una tasa de expansión del empleo insuficiente para absorber la creciente fuerza laboral. Según la Organización Internacional del Trabajo (OIT), en 2015 hay más de 204 millones de personas desempleadas.

Los Objetivos de Desarrollo Sostenible apuntan a estimular el crecimiento económico sostenible mediante el aumento de los niveles de productividad y la innovación tecnológica. La promoción de políticas que estimulen el espíritu empresarial y la creación de empleo son cruciales para este fin, así como también las medidas eficaces para erradicar el trabajo forzoso, la esclavitud y el tráfico humano. Con estas metas en consideración, el objetivo es lograr empleo pleno y productivo y un trabajo decente para todos los hombres y mujeres para 2030.

Objetivo 9: Construir infraestructuras resilientes, promover la industrialización inclusiva y sostenible y fomentar la innovación: La inversión sostenible en infraestructura y la innovación son motores fundamentales del crecimiento y el desarrollo económico. Con más de la mitad de la población mundial viviendo en ciudades, el transporte masivo y la energía renovable son cada vez más importantes, así como también el crecimiento de nuevas industrias y de las tecnologías de la información y las comunicaciones.

Los avances tecnológicos también con esenciales para encontrar soluciones permanentes a los desafíos económicos y ambientales, al igual que la oferta de nuevos empleos y la promoción de la eficiencia
energética. Otras formas importantes para facilitar el desarrollo sostenible son la promoción de industrias sostenibles y la inversión en investigación e innovación científicas.

Más de 4.000 millones de personas aún no tienen acceso a Internet y el 90% proviene del mundo en desarrollo. Reducir esta brecha digital es crucial para garantizar acceso igualitario a la información y el conocimiento y, en consecuencia, para promover la innovación y el emprendimiento.

Estas metas son claves para la generación de propuestas y ejecución de proyectos de investigación, que fortalezcan la academia y la institución, promoviendo prácticas tecnológicas sostenibles y el fomento de la cooperación para asegurar la inversión en la infraestructura necesaria para mejorar la productividad.

¿Cómo lograrlo?

Contando con fuentes de energía limpia para estimular el crecimiento y a la vez ayudar al medio ambiente. Otro aspecto fundamental es reducir la brecha digital para garantizar acceso igualitario a la información y el conocimiento, incentivando la innovación y el emprendimiento [1].

3.3.2.5 Relación del problema con la Política nacional de desarrollo productivo CONPES 3866 de agosto 08 de 2016

La política nacional de desarrollo productivo CONPES 3866 [2] busca generar instrumentos para solucionar fallas de mercado, de gobierno o de articulación a nivel de la unidad productora, para aumentar la productividad y la diversificación del aparato productivo colombiano hacia bienes y servicios más sofisticados. Algunos de los principios que fundamentan esta política son mejorar las capacidades de innovar, de absorber y transferir conocimiento e implementar la tecnología en las unidades productoras. Otro pilar de esta política es aumentar la eficiencia y efectividad en la provisión de capital humano como un factor de producción que conlleve a generar un entorno que promueva los encadenamientos, la calidad y la exposición de los bienes y servicios nacionales a mercados internacionales.

El plan de acción de la política nacional de desarrollo productivo CONPES 3866 involucra varias estrategias para su cumplimiento como el aprovechamiento de las tecnologías existentes, asistencia técnica agropecuaria, inversión en proyectos de innovación, implementación de proyectos regionales para la innovación y emprendimiento.

La necesidad de integrar la tecnología y la automatización en los de procesos productivos, que se plantea en el problema de investigación de la sublínnea, involucra implícitamente algunos aspectos como la necesidad de innovar para mejorar los procesos de producción, apoyar los procesos agroindustriales típicos de la región, aumentar la productividad y eficiencia de los trabajadores, incrementar la calidad de los productos y servicios generados, etc. De acuerdo con estos aspectos y a los planteamientos encontrados en esta política, se encuentra una amplia relación entre estos dos elementos.

3.3.2.6 Relación de la sublínnea con los sectores del Plan de Acuerdo estratégico departamental de ciencia, tecnología e innovación del Quindío (PAED)

El Plan de Acuerdo estratégico departamental de ciencia, tecnología e innovación del Quindío [3] establece seis focos temáticos estratégicos, que de acuerdo con los lineamientos de la sublínnea de
Automatización y Diseño Mecatrónico en la que se le apunta al desarrollo de servicios y productos de automatización, optimización de procesos, diagnóstico, mantenimiento, diseño mecatrónico, robótica, entre otros; se puede enmarcar en los siguientes sectores:

- Foco 1: Agricultura y Desarrollo Rural
- Foco 2: Ambiente y Desarrollo Sostenible
- Foco 3: Comercio, Industria y Turismo
- Foco 4: Educación
- Foco 6: Tecnologías de la Información y las Comunicaciones

3.3.2.7 Relación de la sublínea con los sectores priorizados del Plan regional de competitividad del Quindío 2032

El plan regional de competitividad del Quindío 2032 [4] tiene establecidos los siguientes objetivos para el crecimiento del departamento:

- Un departamento ambientalmente sostenible y sustentable
- Equitativo, justo e incluyente socialmente
- Modelo de asociatividad e integración regional
- Con un nivel de Ingreso Medio Alto per cápita
- Entre los cinco Departamentos más competitivos del país.
- Fundamentado en el aumento y diversificación de la productividad exportadora.
- Con una actividad turística y otros servicios de alto valor agregado.
- Desarrollo de competencias, formación laboral, investigación y alta tecnología, en conectividad con el mundo globalizado.

El desarrollo de este plan se hará a través de la política de transformación productiva de la región, que se fundamenta en diferentes ejes estratégicos como crecimiento e internacionalización de la economía, salto a una plataforma territorial productiva, competitiva y ambientalmente sustentable; Formalización y emprendimiento, educación y talento humano para la competitividad y la productividad, política pública para la competitividad, ciencia, innovación, tecnología y desarrollo. Estas iniciativas buscan tener un alto impacto social y requieren ser complementadas con herramientas transversales tales como la educación, la ciencia, innovación, tecnología de tal manera que conduzcan a mejorar la competitividad del Departamento.

Otro aspecto importante en el Plan Regional de Competitividad del Quindío 2032 es la identificación de tres sectores productivos como ejes principales de desarrollo, (sector de servicios, sector agroindustrial, sector de manufactura), los cuales se encuentran en concordancia con las temáticas estudiadas en la sublínea de investigación donde se hace un enfoque hacia el desarrollo de productos y servicios de carácter tecnológico que pueden ser aplicadas y en los sectores mencionados.

En subsectores como el de la industria del software y tecnologías de la información, el cuero y marroquinería, la industrialización de la guadua y fabricación de muebles que son focos de interés dentro del Plan Regional de Competitividad del Quindío 2032, también se enmarca la Sublínea de Automatización y Diseño Mecatrónico dado que en estos sectores se requiere la optimización y
automatización de procesos; Diagnóstico, mantenimiento y diseño de equipos, los cuales son temas que se encuentran dentro de los lineamientos de la sublínea.

3.3.2.8 Grupos, redes e instituciones que trabajen a nivel nacional e internacional relacionadas con el problema de la sublínea de investigación

Tabla 20. Grupos, redes e instituciones relacionadas con el problema de la sublínea de investigación

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Temas de estudio y/o áreas de interés y/o actividad principal de la empresa</th>
<th>Contacto</th>
<th>Ciudad/país</th>
<th>Sitio web</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo de investigación en Automatización y Control</td>
<td>Automatización y Control</td>
<td>apardo13@hotmail.com</td>
<td>Pamplona/Colombia</td>
<td>http://www.unipampolina.edu.co/unipamplonaportaliG/home_136/recursos/general/01052015/investigacion.jsp</td>
</tr>
<tr>
<td>Grupo de investigación GICYM</td>
<td>Diseño Mecatrónico Robótica Modelado Simulación Automatización</td>
<td>gicym@unab.edu.co</td>
<td>Bucaramanga/Colombia</td>
<td>http://www.unab.edu.co/investigacion/grupo-de-investigacion-en-control-y-mecatronica-GICYM</td>
</tr>
<tr>
<td>Grupo de investigación Mecabotica</td>
<td>Automatización industrial Autotróncico Diseño mecatrónico, Energías limpias Instrumentación y control</td>
<td>i.mecatronica@utp.edu.co</td>
<td>Pereira/Colombia</td>
<td>https://tecnologias.utp.edu.co/ingenieria-mecatronica/grupo-de-investigacion.html</td>
</tr>
<tr>
<td>Grupo de investigación GIMAC</td>
<td>Instrumentación Modelamiento Automatización y Control</td>
<td>patriciaquevedo@uniboyaca.edu.co</td>
<td>Tunja/Colombia</td>
<td>http://www.uniboyaca.edu.co/facultades/FCIN/index.php/investigacion-meca/grupos-meca/item/560-gimac#.Wi_fNUriaUk</td>
</tr>
<tr>
<td>Grupo de investigación en Ingeniería Mecatrónica (GIIM)</td>
<td>Inteligencia y visión artificial. Optimización de procesos con nanotecnología y nuevas fuentes de energía. Bioingeniería y biomédica. Robótica y automatismo.</td>
<td>giim@uac.edu.co</td>
<td>Barranquilla/Colombia</td>
<td>http://vit.uac.edu.co/grupos-de-investigacion-giim</td>
</tr>
</tbody>
</table>

56
<table>
<thead>
<tr>
<th>Grupo de investigación</th>
<th>Desarrollo de Productos Inteligentes, Diseño Mecatrónico, Nuevos Materiales, Robótica de Servicio</th>
<th>jfarchid@uis.edu.co</th>
<th>Bucaramanga/Colombia</th>
<th>http://www.uis.edu.co/webUIS/es/investigacionExtension/gruposInvestigacion/gruposFisicoMecanicas.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grupo de investigación, visión artificial, robótica y control (AVARC)</td>
<td>Robótica móvil, Robótica Industrial, Automatización de Máquinas</td>
<td>unrobot@unal.edu.co</td>
<td>Bogotá/Colombia</td>
<td>http://unal.edu.co/</td>
</tr>
<tr>
<td>Grupo de investigación en sistemas inteligentes</td>
<td>Robótica, visión de máquina e inteligencia artificial, Instrumentación industrial, Control de procesos</td>
<td>dcampo@unicomfacauca.edu.co</td>
<td>Popayán/Colombia</td>
<td>http://www.unicomfacauca.edu.co/revista/?q=grupo_investigacion</td>
</tr>
<tr>
<td>Grupo de investigación en sistemas inteligentes</td>
<td>Automatización de procesos, sistemas y servicios</td>
<td>jorangel@unal.edu.co</td>
<td>Bogotá/Colombia</td>
<td>https://www.lasalle.edu.co/investigacion/grupos-de-investigacion</td>
</tr>
<tr>
<td>Grupo de investigación, visión artificial, robótica y control (AVARC)</td>
<td>Robótica</td>
<td>mkt@ciateq.mx</td>
<td>Querétaro/México</td>
<td>http://www.ciateq.edu.mx/</td>
</tr>
<tr>
<td>Grupo de investigación Mecatrónica, electrónica, biónica, telemática</td>
<td>Mecatrónica, Electrónica, Biónica, Telemática</td>
<td>dingenieria.upiita@ipn.mx</td>
<td>México D.F./México</td>
<td>https://www.upiita.ipn.mx/oferta-educativa/mecatronica/ingenier%C3%ADa-mecatr%C3%B3nica</td>
</tr>
<tr>
<td>Grupo de investigación Automática, Robótica y Mecatrónica</td>
<td>Control predictivo, adaptativo y robusto, Robótica de manipulación y móvil, Eficiencia energética, Biotecnología, Bioingeniería</td>
<td>beren@ual.es</td>
<td>Almería/España</td>
<td>http://cvirtual.ual.es/webual/jsp/investigacion/nuevo/plnicio.jsp?id_grupo=TEP197&idioma=es</td>
</tr>
</tbody>
</table>
3.3.2.9 Contexto institucional

Las políticas institucionales establecen la necesidad de formar profesionales emprendedores e innovadores, con cultura investigativa y tecnológica, capaces de construir proyectos en beneficio de la región cafetera y de Colombia. La sublínea de investigación contribuye en el cumplimiento de estas políticas por medio de la generación de soluciones tecnológicas e innovadoras dirigida a los diferentes sectores productivos de la región; En donde se aplican estrategias de automatización y control para optimizar procesos, permitiendo que se generen productos y servicios de calidad con un alto impacto a nivel social, ambiental y económico.

3.3.2.10 Normatividad

Con el fin de regular, controlar y estandarizar los procesos, el diseño, la implementación y el monitoreo de sistemas, artefactos o dispositivos mecatrónicos; múltiples instituciones han conformado asociaciones que fomentan las buenas prácticas de ingeniería por medio de la implementación de normas. Para Ingeniería Mecatrónica se pueden mencionar las siguientes:

Norma SAMA (Scientific, Aparatus Makers Association) de diagramas funcionales que emplean para las funciones block y las designaciones defunciones. Para ayudar en procesos industriales donde la simbología binaria es extremadamente útil aparecen nuevos símbolos binarios en líneas. El propósito de esta norma es establecer un medio uniforme de designación los instrumentos y los sistemas de la instrumentación usados para la medición y control. Con este fin, el sistema de designación incluye los símbolos y presenta un código de identificación.

Norma ISA (Sociedad de Instrumentistas de América) la norma específica la nomenclatura para nombrar y simboliza instrumentos; es conveniente para el uso en química, petróleo, generación de potencia, aire acondicionado, refinamiento de metales, y otros numerosos procesos industriales. Teniendo aplicabilidad para los procesos de instrumentación, robóticas, automatización y control entre otros, donde usan instrumentos muy especializados. La norma es flexible, lo bastante para encontrarse muchas de las necesidades de campos especiales.

Normas DIN (El Instituto Alemán de Normalización) establece las normas DIN, las cuales establecen los estándares técnicos para el aseguramiento de la calidad en los productos industriales y científicos.

ISO (Organización Internacional de Normalización): es el desarrollador y editor de normas internacionales más grande del mundo, compuesta por una red de institutos de normalización en 163 países. Además, es una organización no gubernamental que integra el sector público y privado permitiendo llegar a un consenso sobre las soluciones que satisfagan tanto los requerimientos del negocio como las necesidades de la sociedad. Entre las diferentes temáticas abordadas por la ISO se encuentra la agricultura, la construcción, ingeniería mecánica, productos sanitarios y las TIC.

IEEE (The Institute of Electrical and Electronics Engineers, inc.): Su misión es básicamente fomentar la prosperidad global para beneficio de la humanidad, a través del mejoramiento continuo de los procesos de ingeniería, en la creación, desarrollo, integración, participación y aplicación del conocimiento de la
informática, ciencia electromagnética y la electro tecnología. Esta entidad es un líder mundial en el desarrollo de normativas internacionales que soportan las telecomunicaciones, las TIC y la generación de energía - servicios y Colombia pertenece al IEEE Región 9 (Latino América), donde tiene diferentes tipos de membresía, clasificados básicamente en dos grupos: profesionales y miembros estudiantiles.

ACIEM (Asociación Colombiana de Ingenieros): Trabaja por el crecimiento integral de los ingenieros y por su desarrollo profesional y científico. Se involucra con las políticas públicas nacionales que se relacionan con temas como: Aeronáutica/Aeroespacial, Electrónica y Telecomunicaciones, Energía, Formación y Ejercicio Profesional, Infraestructura de transporte, mantenimiento y mecánica, promoción y desarrollo empresarial y reglamentos técnicos de construcción.

ACOFI (Asociación Colombiana de Facultades de Ingeniería) se encarga de propender al impulso y el mejoramiento de la calidad de las actividades de docencia, investigación, innovación, desarrollo tecnológico y extensión en ingeniería que desarrollan las facultades, escuelas y programas de ingeniería en Colombia, con proyección internacional.

3.3.3 Epistemología

3.3.3.1 Referente teórico

La generación de conocimiento en la mecatrónica se logrado mediante los aportes realizados por diferentes investigadores, que han desarrollado teorías que fundamentan esta área del conocimiento. Los más importantes se mencionaran a continuación.

Alan Turing matemático británico, considerado el padre de la informática, desarrollo la denominada máquina de Turing la cual operaba basándose en una serie de instrucciones lógicas, sentando así las bases del concepto moderno de algoritmo. Turing describió en términos matemáticos precisos cómo un sistema automático con reglas extremadamente simples podía efectuar toda clase de operaciones matemáticas expresadas en un lenguaje formal determinado [5].

En el tema de la inteligencia artificial se destacan John McCarthy, Marvin Minsky y Claude Shannon quienes acuñaron este término durante la conferencia de Dartmouth para referirse a “la ciencia e ingenio de hacer máquinas inteligentes, especialmente programas de cálculo inteligentes”. En 1997 La computadora Deep Blue de IBM derroto en el ajedrez al campeón mundial Gary Kasparov, hecho que marco la historia en el desarrollo de la inteligencia artificial. [6]

Dentro de los aportes más importantes en el área de la automatización y control se destaca el trabajo desarrollado por Minorsky y Hazen, en el cual se reconoce la no-linealidad de los sistemas y aplica la linealización mediante el desarrollo en serie de Taylor a sistemas no-lineales correspondientes al movimiento angular de un buque. Hazen, en su publicación "Theory of Servomechanism" 1934, analiza el funcionamiento de los servomecanismos utilizando en su análisis entradas típicas de escalón y rampa; Hazen utiliza herramientas matemáticas como el cálculo operacional de Heaviside [7].

En el contexto de la mecatrónica se puede encontrar una gran cantidad de fundamentos teóricos que desde diverso puntos de vista aportan en el fortalecimiento de la sublínea de investigación, como
consecuencia que están en directa relación con las áreas y temas que son objeto de estudio. A continuación se hará una breve descripción de cada una de ellas.

Automatización y Control: Hace referencia a la implementación de estrategias de control y equipos estandarizados de instrumentación para lograr la autonomía total de los procesos industriales y la optimización de las plantas y equipos aplicados a estos, de tal forma que puedan ser integrados de forma flexible y monitoreado desde interfaces gráficas interactivas, mejorando así la calidad, eficiencia y seguridad de los equipos y procesos industriales con la consecuente reducción de costos. Las principales teorías que son utilizadas en esta área son: la teoría del control análogo, transformada de la place análisis de sistemas en frecuencia, teoría de control clásico (pid adelanto-atastro), control digital, estrategias avanzadas, robustas multivariables.

Robótica: La robótica es un área del conocimiento extensa que involucra diferentes disciplinas de la ingeniería como la mecánica y la electrónica, requiere del uso de una gran variedad de tecnologías. Ha sido subdividida en varios ejes de estudio en los que se encuentra la robótica móvil, animatrónica, robótica médica, robótica industrial, robótica inteligente.

Diseño Mecatrónico: El diseño se entiende como la capacidad para desarrollar productos o sistemas que sean portadores de características deseadas y que se logra básicamente por la transformación de información sobre condiciones, necesidades, demandas, requisitos y exigencias, en la descripción de un artefacto capaz de satisfacer esas demandas, que pueden incluir no solo los deseos del cliente, sino también requisitos de todo el ciclo de vida, esto es, de todos los estados intermedios por los que pasa el producto.

De acuerdo con las tendencias de investigación en ingeniería de diseño, los modelos de diseño se podrían clasificar en cuatro categorías: los modelos cognitivos, los modelos computacionales, los modelos descriptivos y los modelos prescriptivos [8]. Algunos de los modelos más usados son: modelo Dym, modelo Roth, modelo Pahl y Beitz, modelo desarrollo integrado de productos de Andreasen.

Inteligencia Artificial: La inteligencia artificial se puede considerar como un conjunto de técnicas que por sí solas o en combinación con otras pueden ayudar a encontrar una solución a un problema cuya resolución es compleja e inabordable por un ser humano [9]. Los métodos de clasificación son el principal fundamento usado en esta área, entre los importantes se puede encontrar árboles de decisión, redes bayesianas, redes neuronales, algoritmos genéticos, máquinas de aprendizaje.

Instrumentación: Hace referencia al conjunto de ciencias y tecnologías mediante las cuales se miden variables física o químicas con el objeto de obtener información para archivar, evaluar o actuar sobre los sistemas de control automático.

Actualmente la mecatrónica se ha enfocado en el estudio de temáticas que tienen como prioridad dar soluciones a problemáticas encontradas en el sector industrial. A continuación se mencionaran algunas de ellas con sus principales características y aplicaciones.

Microprocesadores y microcontroladores: La implementación de los microprocesadores y microcontroladores dentro de sistemas electromecánicos busca generar mejoras representativas y sistemas semiautónomos.
Diseño de máquinas inteligentes: El diseño y la fabricación de productos es cada vez más sofisticados y por ello se busca que los equipos utilizados en estos procesos sean simples, fáciles de usar, con un alto grado de versatilidad, que permitan la interacción con el usuario y que tengan cierto grado de autonomía. Estas características se logran a por medio de la generación de un flujo de información que se integre en durante todas las etapas de desarrollo del sistema.

Diseños de sistemas de manufactura inteligentes: Los sistemas de manufactura inteligente pueden ser considerados como la integración de la mecatrónica y la manufactura integrada por computador (CIM) que combina disciplinas tales como ingeniería industrial, ingeniería eléctrica, ingeniería mecánica y la informática. La inteligencia artificial (AI) y las tecnologías basadas en sistemas expertos (ES) combinadas con sensores inteligentes, motores circuitos digitales, permiten este avance en precisión y control de sistemas de manufactura en tiempo real [10].

Automatización y control: Los sistemas productivos actuales deben condicionarse para ser competitivos dentro de un mercado con crecientes exigencias en diversificación, selección y adquisición de bienes de consumo. La integración computadorizada de los diferentes procesos permite modelar, simular y programar en tiempo real las diferentes funciones de un proceso productivo como el manejo de materiales, almacenamiento, transporte, maquinado, ensamblaje y control de calidad.

Diseño de sistemas mecatrónicos: Los sistemas mecatrónicos abarcan desde la maquinaria en la industria pesada, pasando por sistemas de propulsión de vehículos, por dispositivos de control de movimiento de precisión en sistemas mecánicos hasta productos de consumo popular. El diseño de este tipo de elementos se encuentra centralizado en la integración de temáticas como circuitos, electrónica, diseño lógico, microprocesadores, sistemas dinámicos y sistemas de medición.

¿Cuáles son las tendencias de la Ingeniería Mecatrónica?

Un enfoque general y de acuerdo con visiones como la del congreso Internacional de Ingeniería Mecatrónica CIIMA 2012, acerca del impacto de la Mecatrónica y la automatización en el mundo, permite ver el aporte de esta área del conocimiento en la revolución tecnológica que se ha vivido en los últimos 20 años en relación con la industrialización mundial, el desarrollo científico y académico en donde se evidencia su aporte en la implementación de dispositivos, prototipos y artefactos, generados como resultados de investigaciones y la unión sinérgica de las diferentes especialidades que conforman este campo, generando así sistemas automatizados que dejaron de ser completamente mecánicos, para usar dispositivos electrónicos de fácil programación.

Las tecnologías que apalancan estos avances, abarcan elementos como la nanoelectrónica, microrrobótica, sensores inteligentes, algoritmos de control predictivo y adaptativo, redes neuronales, inteligencia artificial, técnicas de manufactura flexible, entre otros. Los cuales han logrado alcanzar productos más pequeños, potentes, rápidos, con mayores prestaciones y conectividad. De esta manera se integran tecnologías electrónicas, mecánicas y computacionales generando procesos más eficientes, en menos tiempo y a menor costo.
3.3.3.2 Áreas de investigación correspondientes a la disciplina

Dentro de la sublínea se contemplan las siguientes áreas de investigación:

- Automatización
- Instrumentación y control
- Inteligencia artificial
- Sistemas embebidos
- Diseño mecatrónico
- Robótica

3.3.3.3 Espacios disciplinares que soportan y fortalecen las áreas de investigación

<table>
<thead>
<tr>
<th>Tabla 21. Espacios académicos que soportan las áreas de investigación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Automatización</td>
</tr>
<tr>
<td>Inteligencia Artificial</td>
</tr>
<tr>
<td>Sistemas Embebidos</td>
</tr>
<tr>
<td>Diseño mecatrónico</td>
</tr>
<tr>
<td>Robótica</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia apoyado en la malla curricular del Programa de Ingeniería Mecatrónica
Gráfico 9. Relación del Programa académico de Ingeniería Mecatrónica con el Programa de investigación de la Facultad de Ingeniería
Bibliografía

